4 resultados para MUNE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi(1.65)Pb(0.35)Sr(2)Ca(2) Cu(3)O(10+delta) (Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f similar to 1 Hz) with maximum amplitude B(max) approximate to 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B(a)(t(i)), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T(c) superconductors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical studies on the magnetic field dependence of the electrical resistance R(B(a)) and the transport noise (TN) in polycrystalline high-T(c) superconductors subjected to different uniaxial compacting pressures were conducted. X-ray diffraction rocking curves were performed in different surfaces of the samples in order to investigated the degree of texture The results indicated an improvement of the degree of texture with increasing the uniaxial compacting pressure In theoretical simulations of the data, the polycrystalline superconductors were described as a series-parallel array of Josephson devices The intergranular magnetic field is described within the framework of the intragranular flux-trapping model and the distribution of the grain-boundary angles is assumed to follow the Rayleigh statistical function The proposed model describes well the experimental magnetoresistance R(B(a)) data We have found that the behavior of the R(B(a)) curves changes appreciably when different uniaxially compacting pressures are applied to the sample and such a changes are reproduced by the model when different grain-boundary angles distributions are used In addition, changes in the R(B(a)) dependence have their counterparts in the experimental transport noise signals (C) 2009 Elsevier B.V. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed measurements of electrical resistivity as a function of temperature, rho(T), in polycrystalline samples of YBa(2)Cu(3)O(7-delta) (Y-123) subjected to different uniaxial compacting pressures. We observed by using X-ray diffractometry that samples have a very similar composition. Most of the identified peaks are related to the superconducting Y-123 phase. Also, from the X-ray diffraction patterns performed, in powder and pellet samples, we estimated the Lotgering factor along the (00l) direction, F((00l)). The results indicate that F((00l)) increases from 0.13 to 0.16. From electrical resistivity measurements as a function of temperature, we were able to separate contributions arising from both the grain misalignment and microstructural defects. We found appreciable degradation in the normal-state transport properties of samples with an increase in uniaxial compacting pressure. It seems that this type of behavior is associated with an increase in the influence of microstructural defects at the intergranular level. The experimental results are analyzed in the framework of a current conduction model of granular samples.