3 resultados para MN2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic beta-spodumene polycrystals were produced by a devitrification method, undoped and doped with controlled concentration of the Ce3+ or Mn2+ impurities. The TL properties of these polycrystals and of a colourless natural spodumene were investigated. Some dosimetric properties of them were also discussed. The dopants do not affect the TL peak position with respect a pure beta-spodumene sample but the intensity of the TL peaks at 180 and 280 degrees C is improved in the Ce-doped one. The Ce3+ ions do not participate in the TL light emission; on the other hand, the presence of Mn2+ ions cause an emission band around 600-650 nm in the TL light emission spectrum. The emission around 400 nm appears in the TL emission spectrum of all the samples and it is believed to correspond to aluminium centre ([AlO4/hole](0)) recombination with an electron. The more sensitive samples to gamma-radiation are the colourless natural spodumene and the Ce-doped synthetic spodumene, respectively. The colourless natural spodumene crystal shows a TL peak at 180 degrees C suitable for dosimetry, while for Ce-doped beta-spodumene sample the TL peaks at 180 and 280 degrees C can be used. No fading of the TL emission was observed for Ce-doped beta-spodumene sample up to 80 days after irradiation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural silicate mineral of zoisite, Ca(2)Al(3)(SiO(4))(Si(2)O(7))O(OH), has been investigated concerning gamma-radiation, UV-radiation and high temperature annealing effects on thermoluminescence (TL). X-ray diffraction (XRD) measurement confirmed zoisite structure and X-ray fluorescence (XRF) analysis revealed besides Si, Al and Ca that are the main crystal components, other oxides of Fe, Mg, Cr, Na, K, Sr, Ti, Ba and Mn which are present in more than 0.05 wt%. The TL glow curve of natural sample contains (130-150), (340-370) and (435-475)degrees C peaks. Their shapes indicated a possibility that they are result of composition of two or more peaks strongly superposed, a fact confirmed by deconvolution method. Once pre-annealed at 600 degrees C for 1 h, the shape of the glow curves change and the zoisite acquires high sensitivity. Several peaks between 100 and 400 degrees C appear superposed, and the high temperature peak around 435 degrees C cannot be seen. The ultraviolet radiation, on the other hand, produces one TL peak around 130 degrees C and the second one around 200 degrees C and no more. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.