75 resultados para MIXED-OXIDES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The local atomic structures around the Zr atom of pure (undoped) ZrO(2) nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO(2) nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr-O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye-Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of pore structure on the behavior of lithium intercalation into an electrode containing porous V(2)O(5) film has been investigated and compared with the electrode containing a non-porous V(2)O(5) film. X-ray diffraction patterns indicate a lamellar structure for both materials. Nitrogen adsorption isotherms, t-plot method, and Scanning Electronic Microscopy show that the route employed for the preparation of mesoporous V(2)O(5) was successful. The electrochemical performance of these matrices as lithium intercalation cathode materials was evaluated. The porous material reaches stability after several cycles more easily compared with the V(2)O(5) xerogel. Lithium intercalation into the porous V(2)O(5) film electrode is crucially influenced by pore surface and film surface irregularity, in contrast with the non-porous surface of the V(2)O(5) xerogel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four aluminas were used as Supports for impregnation with a zirconium oxide with the aim to achieve a coating, without phase separation, between Support and modifier. The Supports were impregnated with different concentrations Of zirconium aqueous resin, obtained through the polymeric precursor method. After impregnation the samples were calcined and then characterized by XRD, which led to identification of crystalline zirconia in different concentrations from each support used. Using a simple geometric model the maximum amount Of Surface modifier Oxide required for the complete coating of a support with a layer of unit cells was estimated. According to this estimate, only the support should be identified below the limit proposed and crystalline zirconium oxide Should be identified above this limit when a complete coating is reached. The results obtained From XRD agree with the estimated values and to confirm the coating, the samples were also characterized by EDS/STEM, HRTEM, XPS, and XAS. The results showed that the zirconium oxide oil the Surface of alumina Support reached the coating in the limit of 15 Zr nm(-2), without the formation of the ZrO(2) phase. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalysts of Co/Mg/Al promoted with Ce and La were tested in the catalytic partial oxidation of methane (POM) reaction. The addition of promoters was made by anion-exchange. X-ray diffraction (XRD) confirmed the formation of hydrotalcite phase for precursors. The mixed oxides were characterized as a mixture of Co3O4, periclase (Co, Al)MgO and/or spinel structure (Mg, Co)Al2O4. In the catalytic POM reaction over the promoted catalysts, a reduction in the carbon formation rate was found. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La(1-x)Ce(x)NiO(3) perovskites have been prepared, characterized by XRD. TPR and surface area and tested as catalysts for CO-PROx, with a feed of 2.5% CO, 5% O(2), 33% H(2) and N(2) to 100%. The samples exhibited an XRD pattern typical of the perovskite, with traces of NiO in the LaNiO(3) and La(0.95)Ce(0.05)NiO(3) samples, with some La(2)NiO(4) in the La(0.90)Ce(0.10)NiO(3) sample. All samples were active, but the perovskites with cerium showed good catalytic activity, demonstrating the promoter effect of cerium. The highest conversion of CO and H(2) was obtained with La(0.95)Ce(0.05)NiO(3), probably due to a synergy between Ni and Ce that enhanced O(2) mobility. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of La((1-y))Sr(y)Ni(x)Co((1-x))O(3) perovskites for the water gas shift reaction (WGSR) was investigated. The samples were prepared by the co- precipitation method and were performed by the BET method, XRD, TPR, and XPS. The catalytic tests were performed at 300 and 400 A degrees C and H(2)O(v)/CO = 2.3/1 (molar ratio). The sample with the highest surface area is La(0.70)Sr(0.30)NiO(3). The XRD results showed the formation of perovskite structure for all samples, and the La(0.70)Sr(0.30)NiO(3) sample also presented peaks corresponding to La(2)NiO(4) and NiO, indicating that the solubility limit of Sr in the perovskite lattice was surpassed. The replacement of Co by Ni favored the reduction of the species at lower temperatures, and the sample containing Sr presented the highest amount of reducible species, as identified by TPR results. All samples were active, the Sr containing perovskite appearing the most active due to the highest surface area, presence of the La(2)NiO(4) phase, and higher content of Cu in the surface, as detected by XPS. Among the samples containing Co, the most active one was that with x = 0.70 (60% of CO conversion).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal stresses and crystallographic texture in alpha-Al(2)O(3) scales grown on iron aluminides at 1100 degrees C were determined in situ using synchrotron X-ray diffraction. In the first hour of oxidation, alpha-Al(2)O(3) was formed by direct nucleation and by conversion from transition oxides (either theta-Al(2)O(3) or a mixed Fe-Al oxide). A sharp texture develops connected with the direct nucleation of alpha-Al(2)O(3), in contrast to the weaker texture observed in alpha-Al(2)O(3) originated by previous transformations, which also yielded tensile stresses in early oxidation stages. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na(G)(H(2)W(12)O(40))center dot H(2)O] becomes useful. However, the sodium polytungstate is very expensive in Brazil: hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCI, HNO(3) and H(2)O(2) for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g= 2.00 region, possibly due to a radical of (SiO(3))(3-), mixed with signal of remaining iron [M. lkeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under -gamma-irradiation. However, still due to iron influence, the additive method yielded too old age-value. Since annealing at 300 degrees C, Toyoda and Ikeya IS. Toyoda, M. Ikeya, Geochem. J. 25 (1991) 427-445] states that E `(1)-signal with maximum intensity is obtained, while annealing at 400 degrees C E`(1)-signal is completely eliminated, the subtraction of the second one from 300 degrees C heat-treated sample isolate E`(1)-like signal. Since this is radiation dose-dependent, we show that now EPR dating becomes possible. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing contexts have been shown to critically influence experimental results in psychophysical studies. One of these contexts that show important modulation of the behavioral effects of different stimulatory conditions is the separate (blocked) or mixed presentation of these stimulatory conditions. The study presents evidence that the apparent discriminabilities of two target stimuli can change according to which of these two testing contexts is used. A cross inside a ring and a vertical line inside a ring were presented as go stimuli in a go/no-go reaction time task. In one experiment, each of these stimuli was presented to a different group of volunteers and in another experiment they were presented to the same group of volunteers, randomly mixed in the blocks of trials. Similar reaction times were obtained for the two stimuli in the first experiment, and different reaction times (faster for the cross) in the second experiment. The latter result indicates that the two stimuli have different discriminabilities from the no-go stimulus; the cross having greater discriminability. This difference is however masked, presumably by the adoption of specific compensatory attentional sets, in a separate testing context.