289 resultados para MINERAL BONE DISORDER
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Immunohistochemistry of undecalcified bone sections embedded in methyl methacrylate (MMA) is not commonly employed because of potential destruction of tissue antigenicity by highly exothermic polymerization. The aim of the present study was to describe a new technique in which a quick decalcification of bone sections embedded in MMA improves the results for immunohistochemistry. The quality of interleukin 1 alpha (IL-1 alpha) immunostaining according to the present method was better than the conventional one. Immunostaining for osteoprotegerin (OPG) and the receptor activator of NF-kappa B ligand (RANKL) in bone sections of chronic kidney disease patients with mineral bone disorders (CKD-MBD) was stronger than in controls (postmortem healthy subjects). The present study suggested that this method is easy, fast, and effective to perform both histomorphometry and immunohistochemistry in the same bone fragment, yielding new insights into pathophysiological aspects and therapeutic approaches in bone disease.
Resumo:
Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
Resumo:
This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.
Resumo:
Objective: To analyse bone mineral density (BMD) in juvenile dermatomyositis (JDM) and its possible association with body composition, disease activity, duration of disease, glucocorticoid (GC) use, and biochemical bone parameters, including osteoprotegerin (OPG) and receptor activator of nuclear factor B (RANKL). Methods: Twenty girls with JDM and 20 controls matched for gender and age were selected. Body composition and BMD were analysed by dual-energy X-ray absorptiometry (DXA) and bone mineral apparent density (BMAD) was calculated. Duration of disease, cumulative GC, and GC pulse therapy use were determined from medical records. Disease activity and muscle strength were measured by the Disease Activity Score (DAS), the Childhood Myositis Assessment Scale (CMAS), and the Manual Muscle Test (MMT). Inflammatory and bone metabolism parameters were also analysed. OPG and RANKL were measured in patients and controls using an enzyme-linked immunosorbent assay (ELISA). Results: A lower BMAD in the femoral neck (p< 0.001), total femur (p< 0.001), and whole body (p=0.005) was observed in JDM patients compared to controls. Body composition analysis showed a lower lean mass in JDM compared to controls (p=0.015), but no difference was observed with regard to fat mass. A trend of lower serum calcium was observed in JDM (p=0.05), whereas all other parameters analysed, including OPG and RANKL, were similar. Multiple linear regression analysis revealed that, in JDM, lean mass (p< 0.01) and GC pulse therapy use (p< 0.05) were independent factors for BMAD in the hip region. Conclusions: This study has identified low lean mass and GC pulse therapy use as the major factors for low hip BMAD in JDM patients.
Resumo:
The aim of this study was to analyze vitamin D levels and their association with bone mineral density and body composition in primary antiphospholipid syndrome. For this cross-sectional study 23 premenopausal women with primary antiphospholipid syndrome (Sapporo criteria) and 23 age- and race-matched healthy controls were enrolled. Demographic, anthropometric, clinical and laboratorial data were collected using clinical interview and chart review. Serum 25-hydroxyvitamin D levels, parathormone, calcium and 24-hour urinary calcium were evaluated in all subjects. Bone mineral density and body composition were studied by dual X-ray absorptiometry. The mean age of patients and controls was 33 years. Weight (75.61 [20.73] vs. 63.14 [7.34] kg, p=0.009), body mass index (29.57 [7.17] vs. 25.35 [3.37] kg, p=0.014) and caloric ingestion (2493 [1005.6] vs. 1990 [384.1] kcal/day, p=0.03) were higher in PAPS than controls. All PAPS were under oral anticoagulant with INR within therapeutic range. Interestingly, biochemical bone parameters revealed lower levels of 25-hydroxyvitamin D [21.64 (11.26) vs. 28.59 (10.67) mg/dl, p=0.039], serum calcium [9.04 (0.46) vs. 9.3 (0.46) mg/dl, p=0.013] and 24-hour urinary calcium [106.55 (83.71) vs. 172.92 (119.05) mg/d, p=0.027] in patients than in controls. Supporting these findings, parathormone levels were higher in primary antiphospholipid syndrome than in controls [64.82 (37.83) vs. 44.53 (19.62) pg/ml, p=0.028]. The analysis of osteoporosis risk factors revealed that the two groups were comparable (p>0.05). Lumbar spine, femoral neck, total femur and whole body bone mineral density were similar in both groups (p>0.05). Higher fat mass [28.51 (12.93) vs. 20.01 (4.68) kg, p=0.005] and higher percentage of fat [36.08 (7.37) vs. 31.23 (4.64)%, p=0.010] were observed in PAPS in comparison with controls; although no difference was seen regarding lean mass. In summary, low vitamin D in primary antiphospholipid syndrome could be secondary to higher weight and fat mass herein observed most likely due to adipocyte sequestration. This weight gain may also justify the maintenance of bone mineral density even with altered biochemical bone parameters. Lupus (2010) 19, 1302-1306.
Resumo:
Objective: Only few large families with multiple endocrine neoplasia type 1 (MEN1) have been documented. Here, we aimed to investigate the clinical features of a seven-generation Brazilian pedigree. which included 715 at-risk family members. Design: Genealogical and geographic analysis was used to identify the MEN1 pedigree. Clinical and genetic approach was applied to characterize the phenotypic and genotypic features of the family members. Results: Our genetic data indicated that a founding mutation in the MEN1 gene has occurred in this extended Brazilian family. Fifty family members were diagnosed with MEN1. Very high frequencies of functioning and non-functioning MEN1-related tumors were documented and the prevalence of prolactinoma (29.6%) was similar to that previously described in prolactinoma-variant Burin (32%). In addition, bone mineral density analysis revealed severe osteoporosis (T,-2.87 +/- 0.32) of compact bone (distal radius) in hyperparathyroidism (HPT)/MEN1 patients. while marked bone mineral loss in the lumbar spine (T,-1.95 +/- 0.39). with most cancellous bone, and femoral neck (mixed composition: T,-1.48 +/- 0.27) were also present. Conclusions: In this study, we described clinically and genetically the fifth largest MEN1 family in the literature. Our data confirm previous findings suggesting that prevalence of MEN1-related tumors in large families may differ from reports combining cumulative data of small families. Furthermore. we were able to evaluate the bone status in HPT/MEN1 cases, a subject that has been incompletely approached in the literature. We discussed the bone loss pattern found in our MEN1 patients comparing with that of patients with sporadic primary HPT.
Resumo:
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.
Resumo:
Differences in bone mineral density (BMD) patterns have been recently reported between multiple endocrine neoplasia type 1-related primary hyperparathyroidism (HPT/MEN1) and sporadic primary HPT However studies on the early and later outcomes of bone/renal complications in HPT/MEN1 are lacking In this cross sectional study performed in a tertiary academic hospital 36 patients cases with uncontrolled HPT from 8 unrelated MEN1 families underwent dual energy X ray absorptiometry (DXA) scanning of the proximal one third of the distal radius (1/3DR) femoral neck, total hip, and lumbar spine (LS) The mean age of the patients was 389 +/- 145 years Parathyroid hormone (PTH)/calcium values were mildly elevated despite an overall high percentage of bone demineralization (77 8%) In the younger group (<50 years of age) demineralization in the 1/3DR was more frequent more severe and occurred earlier (40% Z-score 1 81 +/- 0 26) The older group (>50 years of age) had a higher frequency of bone demineralization at all sites (p < 005) and a larger number of affected bone sites (p < 0001), and BMD was more severely compromised in the 1/3DR (p = 007) and LS (p= 002) BMD values were lower in symptomatic (88 9%) than in asymptomatic HPT patients (p < 006) Patients with long standing HPT (>10 years) and gastnnoma/HPT presented significantly lower 1/3DR BMD values Urolithiasis occurred earlier (<30 years) and more frequently (75%) and was associated with related renal comorbidities (50%) and renal insufficiency in the older group (33%) Bone mineral- and urolithiasis-related renal complications in HPT/MEN1 are early onset frequent extensive severe and progressive These data should be considered in the individualized clinical/surgical management of patients with MEN1 associated HPT (C) 2010 American Society for Bone and Mineral Research
Resumo:
Bone disease is a common disorder of bone remodeling and mineral metabolism, which affects patients with chronic kidney disease. Minor changes in the serum level of a given mineral can trigger compensatory mechanisms, making it difficult to evaluate the role of mineral disturbances in isolation. The objective of this study was to determine the isolated effects that phosphate and parathyroid hormone (PTH) have on bone tissue in rats. Male Wistar rats were subjected to parathyroidectomy and 5/6 nephrectomy or were sham-operated. Rats were fed diets in which the phosphate content was low, normal, or high. Some rats received infusion of PTH at a physiological rate, some received infusion of PTH at a supraphysiological rate, and some received infusion of vehicle only. All nephrectomized rats developed moderate renal failure. High phosphate intake decreased bone volume, and this effect was more pronounced in animals with dietary phosphate overload that received PTH infusion at a physiological rate. Phosphate overload induced hyperphosphatemia, hypocalcemia, and changes in bone microarchitecture. PTH at a supraphysiological rate minimized the phosphate-induced osteopenia. These data indicate that the management of uremia requires proper control of dietary phosphate, together with PTH adjustment, in order to ensure adequate bone remodeling.
Resumo:
P>Objective Limited data have been reported on the effect of parathyroidectomy (PTx) on bone mineral density (BMD) in the setting of patients with hyperparathyroidism (HPT) associated with multiple endocrine neoplasia type 1 (MEN1). This study investigates the impact of total PTx on BMD in patients with HPT/MEN1. Design and patients A case series study was performed in a tertiary academic hospital. A total of 16 HPT/MEN1 patients from six families harbouring MEN1 germline mutations were subjected to total PTx followed by parathyroid auto-implant in the forearm. Measurements Bone mineral density values were assessed using dual-energy X-ray absorptiometry. Results Before PTx, reduced BMD (Z-score <-2 center dot 0) was highly prevalent in the proximal one-third of the distal radius (1/3 DR) (50%), lumbar spine (LS) (43 center dot 7%), ultradistal radius (UDR) (43 center dot 7%), femoral neck (FN) (25%) and total femur (TF) (18 center dot 7%) in the patients. Fifteen months after PTx, we observed a BMD improvement in the LS (from 0 center dot 843 to 0 center dot 909 g/cm2; +8 center dot 4%, P = 0 center dot 001), FN (from 0 center dot 745 to 0 center dot 798 g/cm2; +7 center dot 7%, P = 0 center dot 0001) and TF (from 0 center dot 818 to 0 center dot 874 g/cm2; +6 center dot 9%, P < 0 center dot 0001). No significant change was noticed in the 1/3 DR and UDR after PTx. Conclusions This data confirmed BMD recovery in the LS and FN after PTx in HPT/MEN1 patients. We also documented a significant BMD increase in the TF and no change in both the 1/3 DR and UDR BMD after PTx. Our data suggest that LS and proximal femur are the most informative sites to evaluate the short-term BMD outcome after PTx in HPT/MEN1 subjects.
Resumo:
Objective: The study was designed to evaluate the effects of strength training (ST) on the bone mineral density (BMD) of postmenopausal women without hormone replacement therapy. Method: Subjects were randomized into untrained (UN) or trained (TR) groups. The TR group exercised three ST sessions per week for 24 weeks, and body composition, muscular strength, and BMD of the lumbar spine and femur neck were evaluated. Results: Body weight, mass index, and fat percentage were lower after 24 weeks only in the TR group (p < .05). SR also improved the one repetition maximum test in 46% and 39% of upper and lower limbs, respectively. The percentage of demineralization was higher in the UN group than in the TR group at the lumbar spine and femoral neck (p < .05). Discussion: Results indicated that 24 weeks of ST improved body composition parameters, increased muscular strength, and preserved BMD in postmenopausal women.
Resumo:
Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.
Resumo:
Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.