16 resultados para METALS SPECIATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background, aim and scope Although many recent studies have focused on sediment potential toxicity, few of them were performed in tropical shallow aquatic environments. Those places can suffer short-time variations, especially due to water column circulations generated by changes in temperature and wind. Rio Grande reservoir is such an example; aside from that, it suffers various anthropogenic impacts, despite its multiple uses. Materials and methods This work presents the first screening step for understanding sediment quality from Rio Grande reservoir by comparing metal content using three different sediment quality guidelines. We also aimed at verifying any possible spatial heterogeneity. Results and discussion We found spatial heterogeneity varying according to the specific metal. Results showed a tendency for metals to remain as insoluble as metal sulfide (potentially not bioavailable), since sulfide was in excess and sediment physical-chemical characteristics contribute to sulfide maintenance (low redox potential, neutral pH, low dissolved oxygen, and high organic matter content). On the other hand, metal concentrations were much higher than suggested by Canadian guidelines and regional background values, especially Cu, which raises the risk of metal remobilization in cases of water circulation. Further study steps include the temporal evaluation of AVS/SEM, a battery of bioassays and the characterization of organic compounds.
Resumo:
Neotropical forests have brought forth a large proportion of the world`s terrestrial biodiversity, but the underlying evolutionary mechanisms and their timing require further elucidation. Despite insights gained from phylogenetic studies, uncertainties about molecular clock rates have hindered efforts to determine the timing of diversification processes. Moreover, most molecular research has been detached from the extensive body of data on Neotropical geology and paleogeography. We here examine phylogenetic relationships and the timing of speciation events in a Neotropical flycatcher genus (Myiopagis) by using calibrations from modern geologic data in conjunction with a number of recently developed DNA sequence dating algorithms and by comparing these estimates with those based on a range of previously proposed molecular clock rates. We present a well-supported hypothesis of systematic relationships within the genus. Our age estimates of Myiopagis speciation events based on paleogeographic data are in close agreement with nodal ages derived from a ""traditional"" avian mitochondrial 2%/My clock, while contradicting other clock rates. Our comparative approach corroborates the consistency of the traditional avian mitochondrial clock rate of 2%/My for tyrant-flycatchers. Nevertheless, our results argue against the indiscriminate use of molecular clock rates in evolutionary research and advocate the verification of the appropriateness of the traditional clock rate by means of independent calibrations in individual studies. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We investigated chronic incorporation of metals in individuals from poor families, living in a small, restrict and allegedly contaminated area in Sao Paulo city, the surroundings of the Guarapiranga dam, responsible for water supply to 25% of the city population. A total of 59 teeth from individuals 7 to 60 years old were collected. The average concentrations of Pb, Cd, Fe, Zn, Mn, Ni and Cr were determined with an Atomic Absorption Spectrophotometer. The concentrations of all metals as function of the individuals` age exhibited a remarkable similarity: peaks between 7 and 10 years and sharply decreasing at higher ages, which could be attributed to alimentary habits and persistence to metals exposure all along the individuals` life span. From all the measured metals, lead and cadmium were a matter of much more concern since their measured values are close to the upper limits of the world wide averages. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition. (C) 2009 Published by Elsevier Ltd.
Resumo:
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the presence of nutrients and toxic elements in coffees cultivated during the process of conversion, on organic agriculture, in southwest Bahia, Brazil. Levels of the nutrients and toxic elements were determined in samples of soils and coffee tissues from two transitional organic farms by atomic absorption spectrometry (FAAS). The metals in soil samples were extracted by Mehlich1 and USEPA-3050 procedures. Coffee samples from both farms presented relatively high levels of Cd, Zn and Cu (0.75,45.4 and 14.9 mu g g(-1). respectively), but were still below the limits specified by the Brazilian Food Legislation. The application of statistical methods showed that this finding can be attributed to the addition of high amounts of organic matter during the flowering tree period which can act on the bioavailability of metal ions in soils. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An exploratory investigation was conducted on the effects of application of ozone on the removal of organic and inorganic contaminants and the reduction of settleable solids in urban lake sediments. Homogenized sediment samples were treated in a batch reactor with an external recirculation loop and ozone feed from a Venturi injector. The ozone generating system was fed with ambient air with small footprint and operational simplicity. Ozone mass application (g/h) and contact time (min) were varied over wide ranges during testing. The effects of the ozone mass applied per unit time and the contact time on contaminant removal efficiencies were analyzed and a trade-off between the costs of ozonation and of solids treatment and disposal was proposed. The minimum ozone mass application required for total contaminant removal apparently depended on the type of organic contaminant present. An apparent influence of inorganic contaminant speciation on the removal efficiency was found and discussed.
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
In this work a series of tetrakis complexes C[Tm(acac)(4)] where C(+) = Li(+) Na(+) and K(+) countercations and acac = acetylacetonate ligand were synthesized and characterized for photoluminescence investigation The relevant aspect is that these complexes are water-free in the first coordination sphere The emission spectra of the tetrakis Tm(3+)-complexes present narrow bands characteristic of the (1)G(4)->(3)H(6) (479 nm) (1)G(4)->(3)F(4) (650 nm) and (1)G(4) ->(3)H(5) (779 nm) transitions of the Tm(3+) ion with the blue emission color at 479 nm as the most prominent one The lifetime values (tau) of the emitting (1)G(4) level of the C[Tm(acac)(4)] complexes were 344 360 and 400 ns for the Li(+) Na(+) and K(+) countercations respectively showing an increasing linear behavior versus the ionic radius of the alkaline ion An efficient intramolecular energy transfer process from the triplet state (T) of the ligands to the emitting (1)G(4) state of the Tm(3+) ion is observed This fact together with the absence of water molecules in first coordination sphere allows these tetrakis Tm(3+)-complexes to act as efficient blue light conversion molecular devices (c) 2010 Elsevier B V All rights reserved
Resumo:
The present study contributes to the knowledge of the biogeochemistry of Pb, Cd, Cu, and Ni in the Mediterranean Than Lagoon, southern France, which is an important shellfish farming system. The concentrations of the metals were determined in sediment cores and the overlying waters using inductively coupled plasma mass spectrometry. Particular attention was given to the determination of dissolved Cu species because of their dual role as essential nutrient and toxicant to planktonic organisms. Dissolved Cu speciation was determined using the diffusive gradient in thin-film technique (DGT) and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Our data indicated a significant historical contamination of the sediments, which commenced in the second half of the 19th century, with trace metal inputs persisting until the end of the 20th century. In recent years a decrease in metal contamination has become apparent. The maxima observed for Pb, Cd, and Cu profiles probably indicate the occurence of anoxia crises. A strong complexation of the dissolved Cu species was observed in the waters of the Than Lagoon, which reduced the bioavailability of Cu. The dissolved Cu(2+) concentrations were probably too low to cause direct toxic effects on shellfish, but the highest concentration (5.29 pM) observed in this study can potentially influence phytoplankton communities. A comparison between the Cu speciation data indicates that up to 50% of the complexed Cu determined using CLE-ACSV was DGT labile.
Resumo:
The catalytic activity of Ni/CeO(2)-Al(2)O(3) catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO(2) dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 degrees C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H(2) yield with reasonably low amounts of CO. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.
Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
Resumo:
The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of noble metal addition on the catalytic properties of Co/Al2O3 was evaluated for the steam reforming of methane. Co/Al2O3 catalysts were prepared with addition of different noble metals (Pt, Pd, Ru and Ir 0.3 wt.%) by a wetness impregnation method and characterized by UV-vis spectroscopy, temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) of the reduced catalysts. The UV-vis spectra of the samples indicate that, most likely, large amounts of the supported cobalt form Co species in which cobalt is in octahedral and tetrahedral symmetries. No peaks assigned to cobalt species from aluminate were found for the promoted and unpromoted cobalt catalysts. TPO analyses showed that the addition of the noble metals on the Co/Al2O3 catalyst leads to a more stable metallic state and less susceptible to the deactivation process during the reforming reaction. The Co/Al2O3 promoted with Pt showed higher stability and selectivity for H(2)production during the methane steam reforming. (C) 2007 Elsevier Ltd. All rights reserved.