4 resultados para MEDICAMENTOS GENÉRICOS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.
Resumo:
Reaction of VOCl(2) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH) Cl(2)] (1), [VO(H2Am4Me) Cl(2)] center dot 1/2HCl (2), [VO(H2Am4Et) Cl(2)] center dot HCl (3) and [VO(2Am4Ph) Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO(2)(2Am4DH)] (5), [VO(2)(2Am4Me)] (6), [VO(2)(2Am4Et)] (7) and [VO(2)(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of the macrolactone core of migrastatin 2, its potent anti-metastasis analogue 34, and ester derivatives 35 and 38 are reported. The approach involves the use of a dihydroxylation reaction to establish the desired C-8 stereocenter followed by a metathesis cyclization reaction. The effects of the compounds on the migration and invasion of human breast cancer cells were evaluated by using the wound-healing and the Boyden-chamber cell-migration and cell-invasion assays. The results revealed a high potency of the macrolactones 2 and 34 and the ester analogues 35 and 38, which suggests they have potential as antimetastatic agents.
Resumo:
Complexes [RuCl(H4NO(2)Fo4M)(bipy)(dppb)]PF(6) (1), [RuCl(H4NO(2)Fo4M)(Mebipy)(dppb)]PF(6) (2), [RuCl(H4NO(2)Fo4M)(phen)(dppb)]PF(6) (3), [RuCl(H4NO(2)Ac4M)(bipy)(dppb)]PF(6) (4), [RuCl(H4NO(2)Ac4M)(Mebipy)(dppb)]PF(6) (5) and [RuCl(H4NO(2)Ac4M)(phen)(dppb)]PF(6) (6) with N(4)-methyl-4-nitrobenzalde hyde thiosemicarbazone (H4NO(2)Fo4M) and N(4)-methyl-4-nitroacetophenone thiosemicarbazone (H4NO(2) Ac4M) were obtained from [RuCl(2)(bipy)(dppb)], [RuCl(2)(Mebipy)(dppb)], and [RuCl(2)(phen)(dppb)], (dppb = 1,4-bis(diphenylphospine)butane; bipy = 2,2`-bipyridine: Mebipy = 4,4`-dimethyl-2,2`-bipyridine: phen = 1,10-phenanthroline). In all cases the thiosemicarbazone is attached to the metal center through the sulfur atom. Complexes (1-6), together with the corresponding ligands and the Ru precursors were evaluated for their ability to in vitro suppress the growth of Trypanosoma cruzi. All complexes were more active than their corresponding ligands and precursors. Complexes (1-3) and (5) revealed to be the most active among all studied compounds with ID(50) = 0.6-0.8 mu M. In all cases the association of the thiosemicarbazone with ruthenium, dppb and bipyridine or phenanthroline in one same complex proved to be an excellent strategy for activity improvement. (C) 2010 Elsevier Masson SAS. All rights reserved.