212 resultados para MAGNETO-INTERSUBBAND SCATTERING

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present magnetotransport studies of high-density triple quantum well samples with different barrier widths. Because of electron transitions between three occupied 2D subbands, the magneto-resistance shows magneto-intersubband oscillations whose periodicity is determined by the subband separation energies. Temperature-dependent measurements allow us to extract quantum lifetime of electrons. A theoretical consideration of the observed phenomenon is also presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies of magnetoresistance in high-mobility wide quantum wells reveal oscillations which appear with an increase in temperature to 10 K and whose period is close to that of Shubnikov-de Haas oscillations. The observed phenomenon is identified as magnetointersubband oscillations caused by the scattering of electrons between two occupied subbands and the third subband which becomes occupied as a result of thermal activation. These small-period oscillations are less sensitive to thermal suppression than the large-period magnetointersubband oscillations caused by the scattering between the first and the second subbands. Theoretical study, based on consideration of electron scattering near the edge of the third subband, gives a reasonable explanation of our experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interference of microwave-induced resistance oscillations and magneto-intersubband oscillations in double quantum wells exposed to a continuous microwave irradiation is under study. By comparing experimental and theoretical magnetoresistance traces at different temperatures, we confirm that the inelastic mechanism of photoresistance explains our observations up to T similar or equal to 4 K. For higher temperatures, our results suggest a deviation of the inelastic scattering time tau(in) from the predicted T(-2) dependence. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interference of magneto-intersubband oscillations and microwave-induced resistance oscillations is studied in high-density triple quantum wells. We give an introduction into magnetotransport in trilayer systems and focus on photoresistance measurements. The power and frequency dependence of the observed magnetoresistance oscillations can be described by the inelastic mechanism of photoresistance, generalized to the three-subband case. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report in detail oscillatory magnetoresistance in double quantum wells under microwave irradiation. The experimental investigation contains measurements of frequency, power and temperature dependence. In theory, the observed interference oscillations are explained in terms of the influence of subband coupling on the frequency-dependent photoinduced part of the electron distribution function. Thus, the magnetoresistance shows the interference of magneto-intersubband and conventional microwave induced resistance oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron paramagnetic resonance measurements of NiCl(2)-4SC(NH(2))(2) reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k(B)T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T >= 1.5 K. Since the interchain coupling J(perpendicular to)< k(B)T, this shape can be reproduced by a single S=1 antiferromagnetic Heisenberg chain with a strong easy-plane single-ion anisotropy. Importantly, the combination of experiment and modeling we report herein demonstrates a powerful approach to probing spin dispersion in a wide range of interacting magnetic systems without the stringent sample requirements and complications associated with inelastic scattering experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the measurement of Rb(2) molecule formation rate constant due to a two body process in a magneto-optical trap as a function of the sample temperature. The ground state molecules are detected by two-photon ionization, through the intermediate a(3)Sigma(+)(u) -> 2(3)Pi(g) molecular band. Our results show that the Rb(2) molecules formed in the MOT could be due to a wave shape resonance, which enhances the molecule formation rate. This effect may be used to enhance the molecule production; and therefore it maybe important to future experiments involving production and trapping of cold ground state molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) images of normal breast tissue and benign and malignant breast tumour tissues, fixed in formalin, were measured at the momentum transfer range of 0.063 nm(-1) <= q (=4 pi sin(theta/2)/lambda) <= 2.720 nm(-1). Four intrinsic parameters were extracted from the scattering profiles (1D SAXS image reduced) and, from the combination of these parameters, another three parameters were also created. All parameters, intrinsic and derived, were subject to discriminant analysis, and it was verified that parameters such as the area of diffuse scatter at the momentum transfer range 0.50 <= q <= 0.56 nm(-1), the ratio between areas of fifth-order axial and third-order lateral peaks and third-order axial spacing provide the most significant information for diagnosis (p < 0.001). Thus, in this work it was verified that by combining these three parameters it was possible to classify human breast tissues as normal, benign lesion or malignant lesion with a sensitivity of 83% and a specificity of 100%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494379]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]