3 resultados para Lytle, Robert Bruce Jr.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia, and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown; however, the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here, we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development and that proper formation and growth of these structures is sensitive to variations in WNT5A function. Developmental Dynamics 239:327-337, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L. are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Speed 1 1 is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.
Resumo:
We analyzed the structure of a multispecific network or interacting ants and plants bearing extrafloral nectaries recorded in 1990 and again in 2000 in La Mancha, Veracruz, Mexico. We assessed the replicability of the number of interactions found among species and also whether there had been changes in the network structure associated with appearance of new ant and plant species during. that 10-year period. Our results show that the nested topology of the network was similar between sampling dates, group dissimilarity increased, mean number of interactions for ant species increased, the frequency distribution of standardized degrees reached higher values for plant species, more ant species and fewer plant species constituted the core of the more recent network, and the presence of new ant and plant species increased while their contribution to nestedness remained the same. Generalist species (i.e., those with the most links or interactions) appeared to maintain the stability of the network because the new species incorporated into the communities were linked to this core of generalists. Camponotus planatus was the most extreme generalist ant species (the one with the most links) in both networks, followed by four other ant species; but other species changed either their position along the continuum of generalists relative to specialists or their presence or absence within the network. Even though new species moved into the area during the decade between the surveys, the overall network structure remained unmodified.