6 resultados para Lobes pariétaux
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star eta Carinae (Car). The two bipolar nebulae commonly known as the Homunculus and the little Homunculus (LH) were formed from the interaction of these eruptive events with the underlying stellar wind. We assume here an interacting, non-spherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed decreased for a short period of time. This fact suggests that the LH is formed when the eruption ends, from the impact of the post-outburst eta Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; Gonzalez et al.). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The LH (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resemble the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the eta Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of eta Car.
Resumo:
The morphology of terebelliform polychaetes was investigated for a phylogenetic study focused on Terebellidae. For this study, specimens belonging to 147 taxa, preferably type material or specimens from type localities or areas close to them, were examined under stereo, light and scanning electron microscopes. The taxa examined were 1 Pectinariidae, 2 Ampharetidae, 2 Alvinellidae, 8 Trichobranchidae, and 134 Terebellidae, which included 8 Polycirrinae, 15 Thelepodinae, and 111 Terebellinae. A comparison of the morphology, including prostomium, peristomium, anterior segments and lobes, branchiae, glandular venter, nephridial and genital papillae, notopodia and notochaetae, neuropodia and neurochaetae, and posterior end, was made of all the currently recognized families of terebelliform polychaetes, with special emphasis on Terebellidae. A discussion of the characters useful to distinguish between genera is given. This character set will be used in a subsequent phylogenetic study (Nogueira & Hutchings in prep.)
Resumo:
Four taxa of terebellines with problematic taxonomic histories are redescribed. One is a new species that has been mis-identified for the last 37 years and one is allocated to a different genus from that to which it was previously assigned. Pista corrientis McIntosh, 1885 was described from Argentina and has been reported from several localities along the Brazilian coast. Examination of the holotype of P. corrientis revealed that the Brazilian specimens belong to a separate species, herein described as P. nonatoi sp. nov., and a redescription of the holotype of P. corrientis is provided. Pista sombreriana (McIntosh, 1885) was considered indeterminable due to the poor condition of the holotype. Our examination of the holotype showed that although it is poorly preserved most taxonomic characters are visible. The morphology of the lobes on anterior segments, especially those of segments 3-4, is closer to Lanicides than to Pista but considering that Lanicides is also poorly defined we redescribe P. sombreriana under its original designation. Finally, Eupolymnia turgidula (Ehlers, 1887) has been considered as a junior synonym of E. crassicornis (Schmarda, 1861) but a recent study resurrected it as a valid species of Terebella, which was the original generic designation. According to our examination of the holotype, E. turgidula does belong to Eupolymnia, but it is uncertain as to whether it is a valid species or a synonym of either E. crassicornis or E. magnifica (Webster, 1884).
Resumo:
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s. s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s. s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s. l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s. l. (Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution.
Resumo:
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Middle to Late Holocene barriers are conspicuous landforms in southeastern and southern Brazilian regions. The barriers in the coastal zones of northern Santa Catarina, Parana and Sao Paulo states (27 degrees 19`-24 degrees 00`S) are formed mainly by beach ridge alignments and many barriers present foredune and blowout alignments in their seaward portion. The development of these eolian landforms appears to record a regional shift in coastal dynamics and barrier building. In this context, the Ilha Comprida barrier stands out for its well-developed and well-preserved foredunes and blowouts. Based on the presence or not and type of eolian landforms, the Ilha Comprida barrier can be divided seaward into inner, middle and outer units. The inner unit is formed entirely by beach ridges. The middle unit comprises a narrow belt of blowouts (up to 15 m high) aligned alongshore. Blowout lobes pointing NNW are indicative of their generation by southern winds. The outer unit is represented by low (<= 1 m high) active or stabilized foredunes and a small transgressive dunefield (similar to 1 km(2)). Twenty-seven luminescence ages (SAR protocol) obtained for the beach ridges, foredunes, and blowouts of these three units allow definition of a precise chronology of these landforms and calculation of rates of coastal progradation. The inner unit presents ages greater than 1004 +/- 88 years. The blowouts of the middle unit show ages from 575 +/- 47 to 172 +/- 18 years. The ages of the outer unit are less than 108 +/- 10 years. Rates of coastal progradation for the inner and outer units are 0.71-0.82 m/year and 0.86-2.23 m/year, respectively. The main phase of blowout development correlates well with the Little Ice Age (LIA) climatic event. These results indicate that southern winds in subtropical Brazil became increasingly more intense and/or frequent during the LIA. These conditions persist to the present and are responsible for the development of the eolian landforms in the outer unit. Thus, barrier geomorphology can record global climatic events. The sensitivity of barrier systems in subtropical Brazil to Late Holocene climate changes was favored by the relative sea level stillstand during this time. Luminescence dating makes it possible to analyze barrier geomorphology during Late Holocene climate changes operating on timescales of a hundred to thousand years. These results improve our knowledge of barrier building and will help in the evaluation of the impact of future climate changes on coastal settings. (C) 2008 Elsevier Ltd. All rights reserved.