199 resultados para Liquid mixture technique
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis
Resumo:
Activity-directed fractionation and purification processes were employed to identify isoflavonoids with antioxidant and antimicrobial activities from Brazilian red propolis. Crude propolis was extracted with ethanol (80%. v/v) and fractioned by liquid-liquid extraction technique using hexane and chloroform. Since chloroform fraction showed strong antioxidant and antimicrobial activities it was purified and isolated using various chromatographic techniques. Comparing our spectral data (UV, NMR, and mass spectrometry) with values found in the literature, we identified two bioactive isoflavonoids (vestitol and neovestitol), together with one chalcone (isoliquiritigenin). Vestitol presented higher antioxidant activity against beta-carotene consumption than neovestitol. The antimicrobial activity of these three compounds against Staphylococcus aureus, Streptococcus mutans, and Actinomyces naeslundii was evaluated and we concluded that isoliquiritigenin was the most active one with lower MIC, ranging from 15.6 to 62.5 mu g/mL. Our results showed that Brazilian red propolis has biologically active isoflavonoids that may be used as a mild antioxidant and antimicrobial for food preservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.
Resumo:
To validate a practical technique of simultaneous evaluation of the plasma, acrosomal and mitochondrial membranes in equine spermatozoa three fluorescent probes (PI, FITC-PSA and MITO) were associated. Four ejaculates from three stallions (n=12) were diluted in TALP medium and split into 2 aliquots, 1 aliquot was flash frozen in liquid nitrogen to induce damage in cellular membranes. Three treatments were prepared with the following fixed ratios of fresh semen: flash frozen semen: 100:0 (T100), 50:50 (T50), and 0:100 (T0). A 150-µL aliquot of diluted semen of each treatment was added of 2 µL of PI, 2 µL of MITO and 80 µL of FITC-PSA; incubated at 38.5ºC/8 min, and sperm cells were evaluated by epifluorescent microscopy. Based in regression analysis, this could be an efficient and practical technique to assess damage in equine spermatozoa, as it was able to determine the sperm percentage more representative of the potential to fertilize the oocyte.
Resumo:
Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
A phase-only encryption/decryption scheme with the readout based on the zeroth-order phase-contrast technique (ZOPCT), without the use of a phase-changing plate on the Fourier plane of an optical system based on the 4f optical correlator, is proposed. The encryption of a gray-level image is achieved by multiplying the phase distribution obtained directly from the gray-level image by a random phase distribution. The robustness of the encoding is assured by the nonlinearity intrinsic to the proposed phase-contrast method and the random phase distribution used in the encryption process. The experimental system has been implemented with liquid-crystal spatial modulators to generate phase-encrypted masks and a decrypting key. The advantage of this method is the easy scheme to recover the gray-level information from the decrypted phase-only mask applying the ZOPCT. An analysis of this decryption method was performed against brute force attacks. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3223629]
Resumo:
In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m(3)) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.
Resumo:
In this study, a simple, rapid and sensitive HPLC method with UV detection is described for determination of metformin in plasma samples from bioequivalence assays. Sample preparation was accomplished through protein precipitation with acetonitrile and chromatographic separation was performed on a reversed-phase phenyl column at 40 degrees C. Mobile phase consisted of a mixture of phosphate buffer and acetonitrile at flow rate of 1.0 ml/min. Wavelength was set at 236 nm. The method was applied to a bioequivalence study of two drug products containing metformin, and allowed determination of metformin at low concentrations with a higher throughput than previously described methods. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm x 4.6 mm, 5 mu m) at 35 degrees C under isocratic conditions using 5 mM KH(2)PO(4) buffer solution pH 6.0: methanol: diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min(-1). UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL, plasma using ethyl acetate and Na(2)HPO(4) pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5,4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether: n-hexane: methanol (50:30:20). In both methods the solvent was evaporated at 40 degrees C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL(-1) plasma (r >= 0.9927), limits of quantification of 50 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL(-1) plasma (r >= 0.9900), limits of quantification of 30 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Emulsions containing liquid crystals present interesting properties and advantages such as the skin moisturize increase, active release modulation, and emulsion stabilization. In this work, emulsions containing annatto, coffee and tea tree oils, and nonionic surfactants were developed. The HLB method was used for selection of surfactants. The required HLB value was established (9.0). Liquid crystals were attained when used the surfactant mixture Ceteareth-5 and Steareth-2 and identified as lamellar. The emulsions showed pseudoplastic behavior and tixotropy. The ternary diagram was useful in the selection of the proportion of surfactant and oily phase considering skin compatibility and liquid crystal presence.