5 resultados para Level Independent Quasi-Birth-Death (LIQBD) Process
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objectives. To describe the prevalence of dental caries in children with deciduous teeth in urban and rural areas in the state of Sao Paulo, Brazil, and to identify associated factors. Methods. The study included 24 744 children ( 5 - 7 years of age) examined as part of an epidemiological survey on oral health carried out in the state of Sao Paulo ( Levan-tamento Epidemiologico de Sa de Bucal do Estado de Sao Paulo). Multilevel analysis was used to investigate whether the prevalence of untreated caries was associated with the sociodemographic characteristics of the children examined or with the socioeconomic aspects of the participating cities. Results. Being black or brown ( adjusted odds ratio ( OR) = 1.27), attending school in rural areas ( adjusted OR = 1.88), and attending public school ( adjusted OR = 3.41) were identified as determinants for an increased probability of presenting deciduous teeth with untreated caries. Being a female ( adjusted OR = 0.83) was identified as a protective factor. The negative coefficients obtained for second- level independent variables indicate that the oral health profile of the cities included in the study were positively impacted by a higher municipal human development index ( beta = - 0.47) and fluoridated drinking water ( beta = - 0.32). Conclusions. The prevalence of untreated caries is influenced by individual and sociodemographic factors. The present study provides epidemiological information concerning the rural areas in the state of Sao Paulo. This information is useful for strategic planning and for establishing guidelines for oral health actions in local health systems, thereby contributing to oral health equity.
Resumo:
Carbon nanotubes rank amongst potential candidates for a new family of nanoscopic devices, in particular for sensing applications. At the same time that defects in carbon nanotubes act as binding sites for foreign species, our current level of control over the fabrication process does not allow one to specifically choose where these binding sites will actually be positioned. In this work we present a theoretical framework for accurately calculating the electronic and transport properties of long disordered carbon nanotubes containing a large number of binding sites randomly distributed along a sample. This method combines the accuracy and functionality of ab initio density functional theory to determine the electronic structure with a recursive Green`s functions method. We apply this methodology on the problem of nitrogen-rich carbon nanotubes, first considering different types of defects and then demonstrating how our simulations can help in the field of sensor design by allowing one to compute the transport properties of realistic nanotube devices containing a large number of randomly distributed binding sites.
Resumo:
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TR beta-selecfive agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.