1 resultado para Letters of credit.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (6)
- Archive of European Integration (18)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (7)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (5)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (15)
- Center for Jewish History Digital Collections (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (19)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (8)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (9)
- Digital Commons @ Winthrop University (4)
- Digital Commons at Florida International University (7)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (9)
- Línguas & Letras - Unoeste (1)
- Memoria Académica - FaHCE, UNLP - Argentina (10)
- Portal de Revistas Científicas Complutenses - Espanha (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (31)
- Queensland University of Technology - ePrints Archive (8)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (56)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (48)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (5)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (7)
- University of Michigan (481)
- University of Queensland eSpace - Australia (7)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Credit scoring modelling comprises one of the leading formal tools for supporting the granting of credit. Its core objective consists of the generation of a score by means of which potential clients can be listed in the order of the probability of default. A critical factor is whether a credit scoring model is accurate enough in order to provide correct classification of the client as a good or bad payer. In this context the concept of bootstraping aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the fitted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper we propose a new bagging-type variant procedure, which we call poly-bagging, consisting of combining predictors over a succession of resamplings. The study is derived by credit scoring modelling. The proposed poly-bagging procedure was applied to some different artificial datasets and to a real granting of credit dataset up to three successions of resamplings. We observed better classification accuracy for the two-bagged and the three-bagged models for all considered setups. These results lead to a strong indication that the poly-bagging approach may promote improvement on the modelling performance measures, while keeping a flexible and straightforward bagging-type structure easy to implement. (C) 2011 Elsevier Ltd. All rights reserved.