310 resultados para Leishmania species
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A real-time polymerase chain reaction (PCR) test was developed on the basis of the Leishmania glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, Leishmania (Viannia) and Leishmania (Leishmania) in the Americas. Furthermore, use of TaqMan probes enables distinction between L. (V.) braziliensis or L. (V.) peruviania from the other L. (Viannia) species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for L. (Leishmania) subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies Leishmania in human biopsy specimens and represents a new tool to study leishmaniasis.
Resumo:
There is little available information regarding the infectivity of New World Leishmania species, particularly those from the Amazonian Brazil, where there are six species of the subgenus Viannia causing American cutaneous leishmaniasis (ACL). The aim of this study was to compare, in vitro, the potential infectivity of the following Leishmania (Viannia) spp.: L. (V.) braziliensis from localized cutaneous leishmaniasis (LCL) and mucocutaneous leishmaniasis (MCL) patients, L. (V.) guyanensis, L. (V.) shawi, L. (V.) lainsoni and L. (V.) naiffi from LCL patients only, in cultured BALB/c mice peritoneal macrophage, as well as the production of NO by the infected cells. The infectivity of parasites was expressed by the infection index and, the nitric oxide (NO) production in the macrophage culture supernatant was measured by the Griess method. It was found that L. (V.) braziliensis from MCL, the more severe form of disease, showed the highest (p <= 0.05) infection index (397), as well as the lowest NO production (2.15 mu M) compared with those of other species. In contrast, L. (V.) naiffi which is less pathogenic for the human showed the lowest infection index (301) and the highest NO production (4.11 mu M). These results demonstrated a negative correlation between the infectivity and the ability of these parasites to escape from the microbicidal activity of the host cell.
Resumo:
Isolation of Leishmania parasite and species identification are important for confirmation and to help define the epidemiology of the leishmaniasis. Mice are often used to isolate pathogens, but the most common mouse strains are resistant to infection with parasites from the Leishmania (Viannia) subgenus. In this study we tested the inoculation of interferon gamma knockout (IFNγ KO) mice with biopsy macerates from Leishmania-infected patients to increase the possibility of isolating parasites. Biopsies from twenty five patients with clinical signs of leishmaniasis were taken and tested for the presence of parasites. Immunohistochemical assay (IHC) and conventional histopathology detected the parasite in 88% and 83% of the patients, respectively. Leishmania sp. were isolated in biopsy macerates from 52% of the patients by culture in Grace's insect medium, but 13% of isolates were lost due to contamination. Inoculation of macerates in IFNγ KO mice provides isolation of parasites in 31.8% of the biopsies. Most isolates belong to L. (Viannia) subgenus, as confirmed by PCR, except one that belongs to L. (Leishmania) subgenus. Our preliminary results support the use of IFNγ KO mice to improve the possibility to isolate New World Leishmania species.
Resumo:
INTRODUCTION: The work was conducted to study phlebotomine fauna (Diptera: Psychodidae) and aspects of American cutaneous leishmaniasis transmission in a forested area where Leishmania (Leishmania) amazonensis occurs, situated in the municipality of Bela Vista, State of Mato Grosso do Sul, Brazil. METHODS: The captures were conducted with modified Disney traps, using hamster (Mesocricetus auratus) as bait, from May 2004 to January 2006. RESULTS: Ten species of phlebotomine sandflies were captured: Brumptomyia avellari, Brumptomyia brumpti, Bichromomyia flaviscutellata, Evandromyia bourrouli, Evandromyia lenti, Lutzomyia longipalpis, Psathyromyia campograndensis, Psathyromyia punctigeniculata, Psathyromyia shannoni and Sciopemyia sordellii. The two predominant species were Ev bourrouli (57.3%) and Bi flaviscutellata (41.4%), present at all sampling sites. Two of the 36 hamsters used as bait presented natural infection with Leishmania. The parasite was identified as Leishmania (Leishmania) amazonensis. CONCLUSIONS: Analysis of the results revealed the efficiency of Disney traps for capturing Bichromomyia flaviscutellata and the simultaneous presence of both vector and the Leishmania species transmitted by the same can be considered a predictive factor of the occurrence of leishmaniasis outbreaks for the human population that occupies the location.
Resumo:
Background: Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis. Methodology: Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit. Results: This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Para, Acre, and Rondonia and cases of ML caused by L. (V.) braziliensis in the state of Rondonia. Conclusions/Significance: L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.
Resumo:
Background: A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes. Methods/Principal Findings: We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia) species, L. (V.) braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L.) mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o) HASPs) are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family. Conclusions/Significance: These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are surface-exposed on amastigotes (although L. (L.) major parasites also express HASPB on the metacyclic plasma membrane). The central repetitive domains of the HASPs are highly variant in their amino acid sequences, both within and between species, consistent with a role in immune recognition in the host.
Resumo:
The incidence of cutaneous leishmaniasis (CL) is increasing and there is limited surveillance of Leishmania species throughout the world. We identified the species associated with CL in a region of Amazonia, an area recognized for its Leishmania species variability. Clinical findings were analyzed and correlated with the species identified in 93 patients. PCR assays were based on small subunit ribosomal DNA (SSU-rDNA) and G6PD, and were performed in a laboratory located 3,500 km away. Leishmania (V.) braziliensis was identified in 53 patients (57%). The other 40 patients (43%) carried a different species (including six cases of L (L) amazonensis). Molecular methods can be employed, using special media, to allow transport to distant laboratories. L (V.) braziliensis is the most common species in the area of Para. The location of ulcers can suggest CL species (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.
Resumo:
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
São apresentadas neste artigo a distribuição da leishmaniose tegumentar (LT) e descrição das populações de flebotomíneos em Acrelândia, Acre. Os dados epidemiológicos foram obtidos a partir de fichas de notificação de casos ocorridos entre 2001 e 2004, e os dados entomológicos são provenientes de capturas com armadilhas luminosas efetuadas entre 2004 e 2005 na zona rural de Acrelândia. Ocorreram 82 novos casos de LT, com idade entre 2 e 69 anos, sendo 75,6% em homens e 83,9% na zona rural. Predominou a LT com lesões únicas (78%). A microscopia direta da lesão, intradermorreação de Montenegro e biópsia apresentaram positividade de 100%, 98% e 79,5%, respectivamente. A resposta ao tratamento farmacológico foi bem sucedida em 71,6% dos casos; a falência terapêutica foi maior em pacientes com diagnóstico exclusivamente clínico (41,2%) e nos que receberam dose diária inadequada de antimonial pentavalente (64,3%). Foram coletados 40 espécimes de flebotomíneos em propriedades rurais com casos de LT (3 gêneros, 14 espécies), sendo 3 espécies conhecidas como vetoras ou possíveis vetoras de Leishmania: Nyssomyia antunesi predominou no peridomicílio (59,1%) e em margens de matas; Nyssomyia whitmani foi freqüente no peridomicílio (15%) e a única espécie encontrada no intradomicílio, e Trichophoromyia ubiquitalis foi capturada no peridomicílio. O uso de dados epidemiológicos existentes no serviço de saúde de Acrelândia, embora com várias limitações, permitiu avaliar a eficácia do diagnóstico e o tratamento empregados no município, enquanto os dados entomológicos coletados podem orientar estudos mais amplos visando identificar os vetores e espécies circulantes na região.
Resumo:
Background Mast cells (MCs) are related with healing process in chronic inflammatory diseases, although in cutaneous leishmaniasis (CL) its importance is unknown. The aim of this study was to determine the correlation of MC with clinical findings in patients with the localized form of CL. Methods A cohort of 85 patients with CL was evaluated. MCs count was performed in pre-treatment biopsies and correlation with clinical findings and Leishmania species determined by PCR were performed. Results The MCs count in patients with CL caused by Leishmania (V.) braziliensis was 14.3 +/- 9.8 cells/mm(2), and 7.0 +/- 6.5 cells/mm(2) in patients with L. (L.) amazonensis (P < 0.05). The linear regression of MCs count with the age showed a tendency of cell number decreasing, according to ageing of the patient (r(2) = 0.05; P < 0.05). The association of disease`s duration and MCs count was positive (r(2) = 0.11; P < 0.05). There was not any association of MCs count with number of lesions neither with Leishmania antigen expression. The MCs count was higher in patients with earlier healing after treatment (P < 0.05). Conclusion MC can be important in CL and related with healing lesion.
Resumo:
An increase in cutaneous and visceral leishmaniasis cases has been reported in recent years in the state of Mato Grosso do Sul, Brazil, and little is known to date about their etiological agents. An investigation into natural Leishmania infection of sand flies captured in this state between December 2003 and August 2004 was carried out. Mini-exon sequences were used as targets to identify Leishmania, and an RFLP technique was employed for those identified as belonging to the Viannia subgenus. Calculation of the minimal infection rate (MR) revealed that 1.6% of sand flies captured in the forest, peridomicile and intradomicile were positive. Six species were found to be infected by Leishmania (V.) braziliensis. Interestingly, two of the six species. Lutzomyia longipalpis and Nyssomyia whitmani, were captured in anthropic environments. The findings of this study constitute a useful tool for planning control measures against this disease in the State of Mato Grosso do Sul. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES To identify the aetiological agents of cutaneous leishmaniasis and to investigate the genetic polymorphism of Leishmania (Viannia) parasites circulating in an area with endemic cutaneous leishmaniasis (CL) in the Atlantic rainforest region of northeastern Brazil. METHODS Leishmania spp. isolates came from three sources: (i) patients diagnosed clinically and parasitologically with CL based on primary lesions, secondary lesions, clinical recidiva, mucocutaneous leishmaniasis and scars; (ii) sentinel hamsters, sylvatic or synanthropic small rodents; and (iii) the sand fly species Lutzomyia whitmani. Isolates were characterised using monoclonal antibodies, multilocus enzyme electrophoresis (MLEE) and polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region rDNA locus. RESULTS Seventy-seven isolates were obtained and characterised. All isolates were identified as Leishmania (Viannia) braziliensis serodeme 1 based on reactivity to monoclonal antibodies. MLEE identified 10 zymodemes circulating in the study region. Most isolates were classified as zymodemes closely related to L. (V.) braziliensis, but five isolates were classified as Leishmania (Viannia) shawi. All but three of the identified zymodemes have so far been observed only in the study region. Enzootic transmission and multiclonal infection were observed. CONCLUSIONS Our results confirm that transmission cycle complexity and the co-existence of two or more species in the same area can affect the level of genetic polymorphism in a natural Leishmania population. Although it is not possible to make inferences as to the modes of genetic exchange, one can speculate that some of the zymodemes specific to the region are hybrids of L. (V.) braziliensis and L. (V.) shawi.
Resumo:
Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90% similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.