10 resultados para Left Ventricle

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>1. Clinical and experimental evidence highlights the importance of the renin-angiotensin system in renovascular hypertension. Furthermore, genetic factors affecting angiotensin-converting enzyme (ACE) could influence the development of renovascular hypertension. 2. To test the effect of small gene perturbations on the development of renovascular hypertension, mice harbouring two or three copies of the Ace gene were submitted to 4 weeks of two-kidney, one-clip (2K1C) hypertension. Blood pressure (BP), cardiac hypertrophy, baroreflex sensitivity and blood pressure and heart rate variability were assessed and compared between the different groups. 3. The increase in BP induced by 2K1C was higher in mice with three copies of the Ace gene compared with mice with only two copies (46 vs 23 mmHg, respectively). Moreover, there was a 3.8-fold increase in the slope of the left ventricle mass/BP relationship in mice with three copies of the Ace gene. Micewith three copies of the Ace gene exhibited greater increases in cardiac and serum ACE activity than mice with only two copies of the gene. Both baroreflex bradycardia and tachycardia were significantly depressed in mice with three copies of the Ace gene after induction of 2K1C hypertension. The variance in basal systolic BP was greater in mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two copies of the gene (106 vs 54%, respectively). In addition, the low-frequency component of the pulse interval was higher mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two (168 vs 86%, respectively). Finally, in mice with three copies of the Ace gene, renovascular hypertension induced a 6.1-fold increase in the sympathovagal balance compared with a 3.2-fold increase in mice with only two copies of the gene. 4. Collectively, these data provide direct evidence that small genetic disturbances in ACE levels per se have an influence on haemodynamic, cardiac mass and autonomic nervous system responses in mice under pathological perturbation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects: thus, ADP is the most important platelet agonist and recruiting agent, while adenosine, all end product Of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5`-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonuclectidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days Plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In Serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis Was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%, respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our aim was to evaluate the effects of granulocyte colony-stimulating factor (G-CSF) on early cardiac arrhythmias after myocardial infarction (MI) and the impact on survival. Male Wistar rats received repeated doses of 50 mu g/kg G-CSF (MI-GCSF group) or vehicle (MI group) at 7, 3, and 1 days before surgery. MI was induced by permanent occlusion of left corollary artery. The electrocardiogram was obtained before occlusion and then for 30 minutes after surgery. Events and duration of ventricular arrhythmias were analyzed. The levels of connexin43 (Cx43) were measured by Western blot immediately before MI production. Survival was significantly increased in MI-GCSF pretreated group (74% versus 52.0% MI. P < 0.05). G-CSF pretreatment also significantly reduced the ventricular premature beats when compared with the untreated-MI group (201 +/- 47 versus 679 +/- 117, P < 0.05). The number and the duration of ventricular tachycardia were smaller in the MI-G-CSF group, as well as the number of ventricular fibrillation episodes (10% versus 69% in NIL P < 0.05). Cx43 levels were significantly increased by G-CSF treatment (1.27 +/- 0.13 versus 0.86 +/- 0.11; P < 0.05). The MI size 24 hours after occlusion was reduced by G-CSF pretreatment (36 +/- 3% versus 44 +/- 2% of left ventricle in MI group; P < 0.05). The increase of Cx43 expression in the heart may explain the reduced incidence in ventricular arrhythmias in the early phases after coronary artery occlusion in rats, thus increasing survival after MI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence of mild hypertension in women and female rats and our preliminary observation showing that training is not effective to reduce pressure in female as it does in male spontaneously hypertensive rats (SHR) prompt us to investigate the effects of gender on hemodynamic pattern and microcirculatory changes induced by exercise training. Female SHR and normotensive controls (Wistar- Kyoto rats) were submitted to training (55% VO2 peak; 3 months) or kept sedentary and instrumented for pressure and hindlimb flow measurements at rest and during exercise. Heart, kidney, and skeletal muscles (locomotor/ nonlocomotor) were processed for morphometric analysis of arterioles, capillaries, and venules. High pressure in female SHR was accompanied by an increased arteriolar wall: lumen ratio in the kidney (+30%; P < 0.01) but an unchanged ratio in the skeletal muscles and myocardium. Female SHR submitted to training did not exhibit further changes on the arteriolar wall: lumen ratio and pressure, showing additionally increased hindlimb resistance at rest (+29%; P < 0.05). On the other hand, female SHR submitted to training exhibited increased capillary and venular densities in locomotor muscles (+50% and 2.3- fold versus sedentary SHR, respectively) and normalized hindlimb flow during exercise hyperemia. Left ventricle pressure and weight were higher in SHR versus WKY rats, but heart performance (positive dP/dt(max) and negative dP/dt(max)) was not changed by hypertension or training, suggesting a compensated heart function in female SHR. In conclusion, the absence of training- induced structural changes on skeletal muscle and myocardium arterioles differed from changes observed previously in male SHR, suggesting a gender effect. This effect might contribute to the lack of pressure fall in trained female SHRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/Aim: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. Methods: Male Wistar rats (70-100 days) were divided into control (C, n= 12), L-NAME-treated (L, n= 12), exercise (E, n= 13) and exercise plus L-NAME-treated (EL, n= 20) groups. L-NAME was given in drinking water (700 mg. L(-1)) and the exercise was performed on a treadmill (15-25 m.min(-1), 40-60 min. day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H] L-arginine to [(3)H] L-citrulline. Results: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (similar to 50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. Conclusions: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hypertension, left ventricular (LV) hypertrophy develops as an adaptive mechanism to compensate for increased afterload and thus preserve systolic function. Associated structural changes such as microvascular disease might potentially interfere with this mechanism, producing pathological hypertrophy. A poorer outcome is expected to occur when LV function is put in jeopardy by impaired coronary reserve. The aim of this study was to evaluate the role of coronary reserve in the long-term outcome of patients with hypertensive dilated cardiomyopathy. Between 1996 and 2000, 45 patients, 30 of them male, with 52 +/- 11 years and LV fractional shortening <30% were enrolled and followed until 2006. Coronary flow velocity reserve was assessed by transesophageal Doppler of the left anterior descending coronary artery. Sixteen patients showed >= 10% improvement in LV fractional shortening after 17 +/- 6 months. Coronary reserve was the only variable independently related to this improvement. Total mortality was 38% in 10 years. The Cox model identified coronary reserve (hazard ratio = 0.814; 95% CI = 0.72-0.92), LV mass, low diastolic blood pressure, and male gender as independent predictors of mortality. In hypertensive dilated cardiomyopathy, coronary reserve impairment adversely affects survival, possibly by interfering with the improvement of LV dysfunction. J Am Soc Hypertens 2010;4(1):14-21. (C) 2010 American Society of Hypertension. All rights reserved.