2 resultados para Learning environments

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A forum is a valuable tool to foster reflection in an in-depth discussion; however, it forces the course mediator to continually pay close attention in order to coordinate learners` activities. Moreover, monitoring a forum is time consuming given that it is impossible to know in advance when new messages are going to be posted. Additionally, a forum may be inactive for a long period and suddenly receive a burst of messages forcing forum mediators to frequently log on in order to know how the discussion is unfolding to intervene whenever it is necessary. Mediators also need to deal with a large amount of messages to identify off-pattern situations. This work presents a piece of action research that investigates how to improve coordination support in a forum using mobile devices for mitigating mediator`s difficulties in following the status of a forum. Based on summarized information extracted from message meta-data, mediators consult visual information summaries on PDAs and receive textual notifications in their mobile phone. This investigation revealed that mediators used the mobile-based coordination support to keep informed on what is taking place within the forum without the need to log on their desktop computer. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the key issues in e-learning environments is the possibility of creating and evaluating exercises. However, the lack of tools supporting the authoring and automatic checking of exercises for specifics topics (e.g., geometry) drastically reduces advantages in the use of e-learning environments on a larger scale, as usually happens in Brazil. This paper describes an algorithm, and a tool based on it, designed for the authoring and automatic checking of geometry exercises. The algorithm dynamically compares the distances between the geometric objects of the student`s solution and the template`s solution, provided by the author of the exercise. Each solution is a geometric construction which is considered a function receiving geometric objects (input) and returning other geometric objects (output). Thus, for a given problem, if we know one function (construction) that solves the problem, we can compare it to any other function to check whether they are equivalent or not. Two functions are equivalent if, and only if, they have the same output when the same input is applied. If the student`s solution is equivalent to the template`s solution, then we consider the student`s solution as a correct solution. Our software utility provides both authoring and checking tools to work directly on the Internet, together with learning management systems. These tools are implemented using the dynamic geometry software, iGeom, which has been used in a geometry course since 2004 and has a successful track record in the classroom. Empowered with these new features, iGeom simplifies teachers` tasks, solves non-trivial problems in student solutions and helps to increase student motivation by providing feedback in real time. (c) 2008 Elsevier Ltd. All rights reserved.