2 resultados para Learning context

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.