193 resultados para Lattice-gas-model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how to set up a constant particle ensemble for the steady state of nonequilibrium lattice-gas systems which originally are defined on a constant rate ensemble. We focus on nonequilibrium systems in which particles are created and annihilated on the sites of a lattice and described by a master equation. We consider also the case in which a quantity other than the number of particle is conserved. The conservative ensembles can be useful in the study of phase transitions and critical phenomena particularly discontinuous phase transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both models share the same topology and that fluid phases (gas and low- and high-density liquids) can be mapped onto magnetic phases (paramagnetic, antiferromagnetic, and dense paramagnetic, respectively). Both models present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy introduced through orientational variables play no specific role in producing the density anomaly, in agreement with a similar conclusion discussed previously following results for continuous soft core,models. We propose that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyze a threshold contact process on a square lattice in which particles are created on empty sites with at least two neighboring particles and are annihilated spontaneously. We show by means of Monte Carlo simulations that the process undergoes a discontinuous phase transition at a definite value of the annihilation parameter, in accordance with the Gibbs phase rule, and that the discontinuous transition exhibits critical behavior. The simulations were performed by using boundary conditions in which the sites of the border of the lattice are permanently occupied by particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new class of accelerating cosmological models driven by a one-parameter version of the general Chaplygin-type equation of state is proposed. The simplified version is naturally obtained from causality considerations with basis on the adiabatic sound speed vs plus the observed accelerating stage of the universe. We show that very stringent constraints on the unique free parameter a describing the simplified Chaplygin model can be obtained from a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations (BAO). In our analysis we have considered separately the SNe type la gold sample measured by [A.G. Riess et al.. Astrophys. J. 607 (2004) 665] and the supernova legacy survey (SNLS) from [P. Astier et al., Astron. Astrophys. 447 (2006) 31]. At 95.4% (c.l.), we find for BAO + gold sample, 0.91 <= alpha <= 1.0 and Omega(m) = 0.28(-0.048)(+0.043) while BAO + SNLS analysis provides 0.94 <= alpha <= 1.0 and Omega(m) = 0.27(-0.045)(+0.048). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle conservation lattice-gas models with infinitely many absorbing states are studied on a one-dimensional lattice. As one increases the particle density, they exhibit a phase transition from an absorbing to an active phase. The models are solved exactly by the use of the transfer matrix technique from which the critical behavior was obtained. We have found that the exponent related to the order parameter, the density of active sites, is 1 for all studied models except one of them with exponent 2.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.