21 resultados para Large-scale Structure Of Universe
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical model of galaxy evolution in the Millennium Simulation. A density field method was applied to a sample of galaxies brighter than M(r) = -21+5 log h(100) to identify superclusters, taking into account selection and boundary effects. In order to evaluate the influence of the threshold density, we have chosen two thresholds: the first maximizes the number of objects (D1) and the second constrains the maximum supercluster size to similar to 120 h(-1) Mpc (D2). We have performed a morphological analysis, using Minkowski Functionals, based on a parameter, which increases monotonically from filaments to pancakes. An anticorrelation was found between supercluster richness (and total luminosity or size) and the morphological parameter, indicating that filamentary structures tend to be richer, larger and more luminous than pancakes in both observed and mock catalogues. We have also used the mock samples to compare supercluster morphologies identified in position and velocity spaces, concluding that our morphological classification is not biased by the peculiar velocities. Monte Carlo simulations designed to investigate the reliability of our results with respect to random fluctuations show that these results are robust. Our analysis indicates that filaments and pancakes present different luminosity and size distributions.
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.
Resumo:
Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.
Resumo:
Enantiomerically pure (R)- and (S)-gamma-hydroxy-organochalcogenides are prepared using poly-[R]-3-hydroxybutanoate (PHB) as the starting material. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.
Resumo:
The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society
Resumo:
Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This work explores in detail synoptic and mesoscale features of Hurricane Catarina during its life cycle from a decaying baroclinic wave to a tropical depression that underwent tropical transition (TT) and finally to a Category 2 hurricane at landfall over Santa Catarina State coast, southern Brazil. This unique system caused 11 deaths mostly off the Brazilian coast and an estimated half billion dollars in damage in a matter of a few hours on 28 March 2004. Although the closest meteorological station available was tens of kilometres away from the eye, in situ meteorological measurements provided by a work-team sent to the area where the eye made landfall unequivocally reproduces the tropical signature with category 2 strength, adding to previous analysis where this data was not available. Further analyses are based mostly on remote sensing data available at the time of the event. A classic dipole blocking set synoptic conditions for Hurricane Catarina to develop, dynamically contributing to the low wind shear observed. On the other hand, on its westward transit, large scale subsidence limited its strength and vertical development. Catarina had relatively cool SST conditions, but this was mitigated by favourable air-sea fluxes leading to latent heat release-driven processes during the mature phase. The ocean`s dynamic topography also suggested the presence of nearby warm core rings which may have facilitated the transition and post-transition intensification. Since there were no records of such a system at least in the past 30 years and given that SSTs were generally below 26 degrees C and vertical shear was usually strong, despite all satellite data available, the system was initially classified as an extratropical cyclone. Here we hypothesise that this categorization was based oil inadequate regional scale model outputs which did not account for the importance of the latent heat fluxes over the ocean. Hurricane Catarina represents a dramatic event on weather systems in South America. It has attracted attention worldwide and poses questions as whether or not it is a symptom of global warming. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new inflationary scenario whose exponential potential V (Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is confronted with the five-year observations of the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the primordial power spectrum (n(s)) and its running (dn(s)/d ln k) depend on the dimensionless parameter a multiplying the quadratic term in the potential. In the limit a. 0 all the results of the exponential potential are fully recovered. For values of alpha not equal 0, we find that the model predictions are in good agreement with the current observations of the Cosmic Microwave Background (CMB) anisotropies and Large-Scale Structure (LSS) in the Universe. Copyright (C) EPLA, 2008.
Resumo:
Autosomal recessive spastic paraplegia with thinning of corpus callosum (ARHSP-TCC) is a complex form of HSP initially described in Japan but subsequently reported to have a worldwide distribution with a particular high frequency in multiple families from the Mediterranean basin. We recently showed that ARHSP-TCC is commonly associated with mutations in SPG11/KIAA1840 on chromosome 15q. We have now screened a collection of new patients mainly originating from Italy and Brazil, in order to further ascertain the spectrum of mutations in SPG11, enlarge the ethnic origin of SPG11 patients, determine the relative frequency at the level of single Countries (i.e., Italy), and establish whether there is one or more common mutation. In 25 index cases we identified 32 mutations; 22 are novel, including 9 nonsense, 3 small deletions, 4 insertions, 1 in/del, 1 small duplication, 1 missense, 2 splice-site, and for the first time a large genomic rearrangement. This brings the total number of SPG11 mutated patients in the SPATAX collection to 111 cases in 44 families and in 17 isolated cases, from 16 Countries, all assessed using homogeneous clinical criteria. While expanding the spectrum of mutations in SPG11, this larger series also corroborated the notion that even within apparently homogeneous population a molecular diagnosis cannot be achieved without full gene sequencing. (C) 2008 Wiley-Liss, Inc.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Data from 58 strong-lensing events surveyed by the Sloan Lens ACS Survey are used to estimate the projected galaxy mass inside their Einstein radii by two independent methods: stellar dynamics and strong gravitational lensing. We perform a joint analysis of these two estimates inside models with up to three degrees of freedom with respect to the lens density profile, stellar velocity anisotropy, and line-of-sight (LOS) external convergence, which incorporates the effect of the large-scale structure on strong lensing. A Bayesian analysis is employed to estimate the model parameters, evaluate their significance, and compare models. We find that the data favor Jaffe`s light profile over Hernquist`s, but that any particular choice between these two does not change the qualitative conclusions with respect to the features of the system that we investigate. The density profile is compatible with an isothermal, being sightly steeper and having an uncertainty in the logarithmic slope of the order of 5% in models that take into account a prior ignorance on anisotropy and external convergence. We identify a considerable degeneracy between the density profile slope and the anisotropy parameter, which largely increases the uncertainties in the estimates of these parameters, but we encounter no evidence in favor of an anisotropic velocity distribution on average for the whole sample. An LOS external convergence following a prior probability distribution given by cosmology has a small effect on the estimation of the lens density profile, but can increase the dispersion of its value by nearly 40%.
Resumo:
The deep crustal structure of the Parana Basin of southern Brazil is investigated by analyzing P- and PP-wave receiver functions at 17 Brazilian Lithosphere Seismic Project stations within the basin. The study area can be described as a typical Paleozoic intracratonic basin that hosts one of the largest Large Igneous Province of the world and makes a unique setting for investigating models of basin subsidence and their interaction with mantle plumes. Our study consists of (1) an analysis of the Moho interaction phases in the receiver functions to obtain the thickness and bulk Vp/Vs ratio of the basin`s underlying crust and (2) a joint inversion with Rayleigh-wave dispersion velocities from an independent tomographic study to delineate the detailed S-wave velocity variation with depth. The results of our analysis reveal that Moho depths and bulk Vp/Vs ratios (including sediments) vary between 41 and 48 km and between 1.70 and 1.76, respectively, with the largest values roughly coinciding with the basin`s axis, and that S-wave velocities in the lower crust are generally below 3.8 km/s. Select sites within the basin, however, show lower crustal S-wave velocities slightly above 3.9 km/s suggestive of underplated mafic material. We show that these observations are consistent with a fragmented cratonic root under the Parana basin that defined a zone of weakness for the initial Paleozoic subsidence of the basin and which allowed localized mafic underplating of the crust along the suture zones by Cenozoic magmatism.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.