4 resultados para Land surface model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARA (Caxiuan Observations in the Biosphere, River and Atmosphere of Para) field campaign, and high resolution modeling are used to understand the streets` formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.