2 resultados para Laccases

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased incidence of infections caused by the opportunistic pathogen Cryptococcus neoformans, which mainly affects immunocompromised patients but can also infect immunocompetent individuals, has needed additional studies on this micro-organism`s pathogenicity and factors related to virulence, such as enzyme production, for a better understanding of the aetiology of cryptococcosis. The aim of this study was to verify the applicability of non-denaturing PAGE for analysis of laccases by quantification of the amount of melanin pigment produced by clinical and environmental strains of C. neoformans. After incubation of the gel with the substrate L-dopa, strains produced melanin spots of a bright brown to black colour. Quantification of these spots was performed by densitometry analysis and the amount of melanin produced was calculated and compared among the strains. All strains showed laccase activity. Serotype B strains showed a higher melanin intensity than serotype A strains. Over half of the clinical strains (56.2%) showed the lowest melanin intensities, suggesting that melanin production may not be the main virulence factor against host defence. The clinical strain ICB 88 revealed two melanin spots on the gel, indicating the presence of two laccase isoforms. The environmental strains showed the highest values of melanin intensity, which may be related to previous exposure to environmental stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (""ghosts"") can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.