3 resultados para LT-SEM

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 ( with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an similar to 10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type I and type II heat-labile enterotoxins (LT-I and LT-II) are strong mucosal adjuvants when they are coadministered with soluble antigens. Nonetheless, data on the parenteral adjuvant activities of LT-II are still limited. Particularly, no previous study has evaluated the adjuvant effects and induced inflammatory reactions of LT-II holotoxins or their B pentameric subunits after delivery via the intradermal (i.d.) route to mice. In the present report, the adjuvant and local skin inflammatory effects of LT-IIa and its B subunit pentamer (LT-IIaB(5)) were determined. When coadministered with ovalbumin (OVA), LT-IIa and, to a lesser extent, LT-IIaB(5) exhibited serum IgG adjuvant effects. In addition, LT-IIa but not LT-IIaB(5) induced T cell-specific anti-OVA responses, particularly in respect to induction of antigen-specific cytotoxic CD8(+) T cell responses. LT-IIa and LT-IIaB(5) induced differential tissue permeability and local inflammatory reactions after i.d. injection. Of particular interest was the reduced or complete lack of local reactions, such as edema and tissue induration, in mice i.d. inoculated with LT-IIa and LT-IIaB(5), respectively, compared with mice immunized with LT-I. In conclusion, the present results show that LT-IIa and, to a lesser extent, LT-IIaB(5) exert adjuvant effects when they are delivered via the i.d. route. In addition, the low inflammatory effects of LT-IIa and LT-IIaB(5) in comparison to those of LT-I support the usefulness of LT-IIa and LT-IIaB(5) as parenterally delivered vaccine adjuvants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.