10 resultados para LOW HEATING TEMPERATURES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.
Resumo:
Tibolone polymorphic forms I (monoclinic) and II (triclinic) have been prepared by recrystallization from acetone and toluene, respectively, and characterized by different techniques sensitive to changes in solid state, such as polarized light microscopy, X-ray powder diffractometry, thermal analysis (TG/DTG/DSC), and vibrational spectroscopy (FTIR and Raman microscopy). The nonisothermal decomposition kinetics of the obtained polymorphs were studied using thermogravimetry. The activation energies were calculated through the Ozawa`s method for the first step of decomposition, the triclinic form showed a lower E (a) (91 kJ mol(-1)) than the monoclinic one (95 kJ mol(-1)). Furthermore, Raman microscopy and DSC at low heating rates were used to identify and follow the thermal decomposition of the triclinic form, showing the existence of three thermal events before the first mass loss.
Resumo:
We report the design and operation of a device for ac magnetic susceptibility measurements that can operate down to 1 mK. The device, a modification of the standard mutual inductance bridge, is designed with detailed consideration of the thermalization and optimization of each element. First, in order to reduce local heating, the primary coil is made with superconducting wire. Second, a low-temperature transformer which is thermally anchored to the mixing chamber of a dilution refrigerator, is used to match the output of the secondary coil to a high-sensitivity bridge detector. The careful thermal anchoring of the secondary coil and the matching transformer is required to reduce the overall noise temperature and maximize sensitivity. The sample is immersed in liquid (3)He to minimize the Kapitza thermal resistance. The magnetic susceptibility of several magnetic compounds, such as the well-known spin gap compound NiCl(2)-4SC(NH(2))(2) and other powdered samples, have been successfully measured to temperatures well below 10 mK.
Resumo:
Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04-0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1)or TBTU/DIPEA(1:3), 25% DMSO/toluene, 60 degrees C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L-Ser, L-His, L-Cys and/or L-Met were manually synthesized traditionally, at 60 degrees C using conventional heating and at 60 degrees C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L-Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 degrees C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright (C) 2009 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Free-living bacteria must respond to a wide range of temperature changes, and have developed specific mechanisms to survive in extreme environments. In this work we describe a remarkable resistance of mesophilic bacterium Caulobacter crescentus to several cycles of freezing at -80 degrees C, which was able to grow at low temperatures. Exponentially growing cells and late stationary-phase cells presented higher freezing resistance at both -20 and -80 degrees C than early stationary-phase cells. Cryotolerance was observed when log-phase cultures grown at 30 degrees C were preincubated at 5, 15 or 20 degrees C before freezing at -20 degrees C. A transposon library was screened to identify mutants sensitive to freezing at -80 degrees C and three strains presenting < 10% survival were isolated. Identification of genes disrupted in each mutant showed that they encoded an AddA family DNA helicase, a DEAD/DEAH box RNA helicase and a putative RND (resistance, nodulation, cell division) efflux system component. These strains showed longer generation times than wild-type cells when growing at 15 degrees C, with the RNA helicase mutant presenting a severe growth defect. These analyses suggest that the singular intrinsic resistance to freezing of C. crescentus is in fact a consequence of several independent traits, especially the maintenance of a proper degree of supercoiling of nucleic acids.
Resumo:
The bare nucleus S(E) factors for the (2)H(d, p)(3)H and (2)H(d.n)(3)He reactions have been measured for the first time via the Trojan Horse Method off the proton in (3)He from 1.5 MeV down to 2 key. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4 +/- 1.8 MeVb for (3)H + p and 60.1 +/- 1.9 MeV b for (3)He + n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.