75 resultados para LIGNIN PEROXIDASE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We investigated the toxic effect of indole-3-acetic acid (IAA) combined with horseradish peroxidase (HRP) on Prototheca zopfii from bovine mastitis. P. zopfii isolates were identified and characterized by morpho-physiological parameters; presences of P. zopfii genotype 2 were also investigated. Subsequently, P. zopfii was incubated in the absence (control) or presence of IAA/HRP and examined for: (i) cell viability; (ii) colonies number formation; (iii) antioxidant enzyme activity; and (iv) DNA integrity. Significance of differences was calculated using ANOVA and Tukey`s test (P a parts per thousand currency sign 0.05). As evidenced by Trypan blue exclusion and colony formation in Sabouraud dextrose agar, IAA/HRP addition to the culture reduced respective P. zopfii viability and P. zopfii colony formation in a concentration- and time-dependent manner. IAA/HRP specifically reduced cell viability in 10, 15, 20, 25, and 32% after 4, 6, 8, 10, and 12 h of incubation, respectively, compared with the control at the same time. The number of colony formation was inhibited (45, 82, and 88%) by IAA/HRP after 4, 6, and 9 h of incubation, respectively, compared with the control at the same time. In addition, P. zopfii antioxidant activity increased measurably in the presence of IAA/HRP (6 h); superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase increased by 90, 120, 150% and 3.4 times, compared with the controls. IAA/HRP did not appear to effect P. zopfii DNA integrity when examined by electrophoresis. In conclusion, IAA/HRP appears to function as a microbicidal mechanism on P. zopfii genotype 2 from bovine mastitis.
Resumo:
The Ohr (organic hydroperoxide resistance) family of 15-kDa Cys-based, thiol-dependent peroxidases is central to the bacterial response to stress induced by organic hydroperoxides but not by hydrogen peroxide. Ohr has a unique three-dimensional structure and requires dithiols, but not monothiols, to support its activity. However, the physiological reducing system of Ohr has not yet been identified. Here we show that lipoylated enzymes present in the bacterial extracts of Xylella fastidiosa interacted physically and functionally with this Cys-based peroxidase, whereas thioredoxin and glutathione systems failed to support Ohr peroxidase activity. Furthermore, we could reconstitute in vitro three lipoyl-dependent systems as the Ohr physiological reducing systems. We also showed that OsmC from Escherichia coli, an orthologue of Ohr from Xylella fastidiosa, is specifically reduced by lipoyl-dependent systems. These results represent the first description of a Cys-based peroxidase that is directly reduced by lipoylated enzymes.
Resumo:
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Resumo:
A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.
Resumo:
The successful immobilization of enzymes such as horseradish peroxidase (HRP) in solid films is essential for applications in sensors and for fundamental studies aimed at identifying possible biotechnological devices. In this study we show that HRP can be immobilized in alternated layers with chitosan as the template material. The activity of HRP in HRP/chitosan films was preserved for several weeks, and could be detected optically upon monitoring the reaction with pyrogallol. The morphology of the film displayed stripes that disappeared after reaction with pyrogallol. Though the activity in the HRP/chitosan film was lower than in a homogeneous solution or in an LB film investigated earlier, the response was linear for a considerable period of time, which may be advantageous for sensing hydrogen peroxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The immobilization of enzymes in nanostructured films has potential applications, e.g. in biosensing, for which the activity may not only be preserved, but also enhanced if optimized conditions are identified. Optimization is not straightforward because several requirements must be fulfilled, including a suitable matrix and film-forming technique. In this study, we show that horseradish peroxidase (HRP) has its activity enhanced when immobilized in Langmuir-Blodgett (LB) films, in conjunction with dipalmitoylphosphaticlylglycerol (DPPG). Incorporation of HRP into a DPPG monolayer at the air-water interface was demonstrated with compression isotherms, and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS). From the PM-IRRAS data, we inferred that HRP was not denatured when adsorbed on a pre-formed, low pressure DPPG monolayer. A change in orientation was induced by the phospholipid matrix, with the amide C=O and NH groups from HRP being oriented perpendicular to the surface, parallel to the DPPG acyl chains, i.e. the alpha-helix was inserted into the monolayer. The mixed DPPG-HRP monolayer could be transferred onto solid supports, to which HRP activity was ca. 23% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allowed HRP-containing LB films to be used in sensing peroxide. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The method employed to incorporate guest molecules onto phospholipid Langmuir monolayers plays an important role in the interaction between the monolayer and the guest molecules. In this paper, we show that for the interaction between horseradish peroxidase (HRP) and a monolayer of dipalmitoylphosphatidylglycerol (DPPG) does depend on the method of HRP incorporation. The surface pressure isotherms of the mixed DPPG/HRP monolayers, for instance, were less expanded when the two materials were co-spread than in the case where HRP was injected into the subphase. Therefore, the method for incorporation affected not only the penetration of HRP but also the changes in molecular packing caused to the DPPG monolayer. With experiments with the monolayer on a pendant drop, we observed that the incorporation of HRP affects the dynamic elasticity of the DPPG monolayer, on a way that varies with the surface pressure. At low pressures, HRP causes the monolayer to be more rigid, while the converse is true for surface pressures above 8 mN/m. Taken all the results together, we conclude that HRP is more efficiently incorporated if injected into the subphase on which a DPPG monolayer had been spread and that the interaction between HRP and DPPG is maintained even at high surface pressures. This is promising for the possible transfer of mixed films onto solid substrates and for applications in biosensors and drug delivery systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.
Resumo:
Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol-disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV-Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pK(a) of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 +/- 0.2) x 10(7) M(-1) s(-1)) and peroxynitrite ((3.7 +/- 0.4) x 10(5) M(-1) s(-1)) at pH 7.4 and 25 degrees C. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The inactivation kinetics of enzymes polyphenol oxidase (PPO) and peroxidase (POD) was studied for the batch (discontinuous) microwave treatment of green coconut water. Inactivation of commercial PPO and POD added to sterile coconut water was also investigated. The complete time-temperature profiles of the experimental runs were used for determination of the kinetic parameters D-value and z-value: PPO (D(92.20 degrees C) = 52 s and z = 17.6 degrees C); POD (D(92.92 degrees C) = 16 s and z = 11.5 degrees C); PPO/sterile coconut water: (D(84.45 degrees C) = 43 s and z = 39.5 degrees C) and POD/sterile coconut water: (D(86.54 degrees C) = 20 s and z = 19.3 degrees C). All data were well fitted by a first order kinetic model. The enzymes naturally present in coconut water showed a higher resistance when compared to those added to the sterilized medium or other simulated solutions reported in the literature. The thermal inactivation of PPO and POD during microwave processing of green coconut water was significantly faster in comparison with conventional processes reported in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.