8 resultados para LIFETIME DISTRIBUTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
Resumo:
In this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate, the complementary exponential geometric distribution, which is complementary to the exponential geometric model proposed by Adamidis and Loukas (1998). The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, including the mean and variance, variation coefficient, and modal value. The parameter estimation is based on the usual maximum likelihood approach. We report the results of a misspecification simulation study performed in order to assess the extent of misspecification errors when testing the exponential geometric distribution against our complementary one in the presence of different sample size and censoring percentage. The methodology is illustrated on four real datasets; we also make a comparison between both modeling approaches. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved
Resumo:
In this paper, we formulate a flexible density function from the selection mechanism viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006)) which possesses nice biological and physical interpretations. The new density function contains as special cases many models that have been proposed recently in the literature. In constructing this model, we assume that the number of competing causes of the event of interest has a general discrete distribution characterized by its probability generating function. This function has an important role in the selection procedure as well as in computing the conditional personal cure rate. Finally, we illustrate how various models can be deduced as special cases of the proposed model. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved