7 resultados para LCA , differenziazione , simapro , rifiuti , impatto
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
OBJETIVO: O objetivo deste estudo é descrever a metodologia da análise da rotação do joelho utilizando instrumentos do laboratório de biomecânica e apresentar os resultados preliminares de um estudo comparativo com pacientes submetidos à reconstrução do ligamento cruzado anterior com a técnica de duplo feixe. MÉTODOS: Descreveu-se o protocolo atualmente utilizado em nosso laboratório e realizou-se a análise cinemática tridimensional e medida da amplitude de rotação do joelho de oito pacientes normais (grupo controle) e 12 pacientes operados com a técnica de duplo feixe em três tarefas no laboratório de biomecânica. RESULTADOS: Não indicam diferenças significativas entre os lados operados e não operados em relação às amplitudes médias da marcha, da marcha com mudança de direção ou da marcha com mudança de direção ao descer a escada (p > 0,13). CONCLUSÕES: Os resultados preliminares não demonstraram diferença da técnica de reconstrução de LCA em duplo feixe em relação ao lado contralateral e ao grupo controle.
Resumo:
American cutaneous leishmaniasis (ACL) occurs in epidemic outbreaks and in sporadic cases with small annual variation in the Pontal of Paranapanema, SP. There is little research on the sandfly fauna of this region. The last outbreaks were related to the Movement of the Landless Workers (MST) and with the ecological tourism in preserved forest of the Parque Estadual do Morro do Diabo (PEMD). AIM: identification of the sandfly fauna within the PEMD, mainly anthropophilic species already incriminated as vectors of ACL, as well as their seasonality, hourly frequency and data of the behavior. M&M: The captures were undertaken with CDC light and Shannon traps from 6:00 pm to 10:00 pm, monthly from May 2000 to December 2001. The temperature and relative humidity data were registered at hourly intervals. RESULTS: The captured species were: Brumptomyia brumpti, Nyssomyia neivai, Nyssomyia whitmani, Pintomyia fischeri and Pintomyia pessoai. The P. pessoai predominated (34.39%) and N. neivai was less found (0.74%), only being captured in CDC traps. Shannon trap captured more sandflies (63.01%) than the CDC traps (36.99%). Despite the environmental degradation anthropophilic species, indicates favorable bioecological conditions for persistence of vectors and potential transmission of leishmaniasis.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
Background: Current diagnostic criteria cannot capture the full range of bipolar spectrum. This study aims to clarify the natural co-segregation of manic-depressive symptoms occurring in the general population. Methods: Using data from the Sao Paulo Catchment Area Study, latent class analysis (LCA) was applied to eleven manic and fourteen depressive symptoms assessed through CIDI 1.1 in 1464 subjects from a community-based study in Sao Paulo, Brazil. All manic symptoms were assessed, regardless of presence of euphoria or irritability, and demographics, services used, suicidality and CIDI/DSM-IIIR mood disorders used to external validate the classes. Results: The four obtained classes were labeled Euthymics (EU; 49.1%), Mild Affectives (MA; 31.1%), Bipolars (BIP; 10.7%), and Depressives (DEP; 9%). BIP and DEP classes represented bipolar and depressive spectra, respectively. Compared to DEP class, BIP exhibited more atypical depressive characteristics (hypersomnia and increase in appetite and/or weight gain), risk of suicide, and use of services. Depressives had rates of atypical symptoms and suicidality comparable to oligosymptomatic MA class subjects. Limitations: The use of lay interviewers and DSM-IIIR diagnostic criteria, which are more restrictive than the currently used DSM-IV TR. Conclusions: Findings of high prevalence of bipolar spectrum and of atypical symptoms and suicidality as indicators of bipolarity are of great clinical importance, due to different treatment needs, and higher severity. Lifetime sub-affective and syndromic manic symptoms are clinically significant, arguing for the need Of revising DSM bipolar spectrum categories. (C) 2009 Elsevier B.V. All rights reserved.