50 resultados para L function
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Resumo:
We present measurements of J/psi yields in d + Au collisions at root S(NN) = 200 GeV recorded by the PHENIX experiment and compare them with yields in p + p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.
Resumo:
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.
Resumo:
Background: The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results: Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions: Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) (similar to 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L-1) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
Resumo:
Study design: This is cross-sectional study. Objectives: The aim of this study is to investigate the cardiac structure and function of subjects with spinal cord injury (SCI) and the impact of metabolic, hemodynamic and inflammatory factors on these parameters. Setting: Sao Paulo, Brazil. Methods: Sixty-five nondiabetic, nonhypertensive, sedentary, nonsmoker men (34 with SCI and 31 healthy subjects) were evaluated by medical history, anthropometry, laboratory tests, analysis of hemodynamic and inflammatory parameters and echocardiography. Results: Subjects with SCI had lower systolic blood pressure and higher levels of C-reactive protein and tumor necrosis factor receptors than the healthy ones. Echocardiography data showed that the SCI group presented similar left ventricular (LV) structural and systolic parameters, but lower initial diastolic velocity (Em) (9.2 +/- 0.5 vs 12.3 +/- 0.5 cm s(-1); P<0.001) and higher peak early inflow velocity (E)/Em ratio (7.7 +/- 0.5 vs 6.1 +/- 0.3; P = 0.009) compared with the able-bodied group, even after adjustment for systolic blood pressure and C-reactive protein levels. Furthermore, injured subjects with E/Em >8 had lower peak spectral longitudinal contraction (Sm) (9.0 +/- 0.7 vs 11.6 +/- 0.4cm s(-1); P<0.001) and cardiac output (4.2 +/- 0.2 vs 5.0 +/- 0.21 min(-1); P = 0.029), as well as higher relative wall thickness (0.38 +/- 0.01 vs 0.35 +/- 0.01; P = 0.005), than individuals with SCI with E/Em<8, but similar age, body mass index, blood pressure, injury level, metabolic parameters and inflammatory marker levels. Conclusion: Subjects with SCI presented impaired LV diastolic function in comparison with able-bodied ones. Moreover, worse LV diastolic function was associated with a pattern of LV concentric remodeling and subclinical decreases in systolic function among injured subjects. Overall, these findings might contribute to explain the increased cardiovascular risk reported for individuals with SCI. Spinal Cord (2011) 49, 65-69; doi: 10.1038/sc.2010.88; published online 27 July 2010
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam. irradiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Homocysteine is an independent risk factor for coronary heart disease, as well as for cerebrovascular and peripheral vascular diseases. The purpose of this study was to investigate the effects of hyperhomocysteinemia (HHcy) on vascular reactivity within carotid artery segments isolated from ovariectomized female rats. Treatment with dl-Hcy thiolactone (1 g/kg body weight per day) reduced the phenylephrine-induced contraction of denuded rings. However, the treatment did not alter KCl-induced contractions, or relaxations induced by sodium nitroprusside or acetylcholine. We report elevated expressions of iNOS, eNOS, and nitrotyrosine in homocysteine-treated rat artery sections. Moreover, the inhibition of NOS by l-NAME, 1,400 W, or l-NNA restored phenylephrine-induced vasoconstriction in carotid artery segments from Hcy-treated rats. In conclusion, our findings show that severe HHCy can promote an acute decrease in the endothelium-independent contractile responses of carotid arteries to adrenergic agonists. This effect was restored by nitric oxide synthase inhibitors, which further supports the involvement of nitric oxide in HHcy-derived vascular dysfunction.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Tight control over circulating juvenile hormone (JH) levels is of prime importance in an insect`s life cycle. Consequently, enzymes involved in JH metabolism, especially juvenile hormone esterases (JHEs), play major roles during metamorphosis and reproduction. In the highly eusocial Hymenoptera, JH has been co-opted into additional functions, primarily in the development of the queen and worker castes and in age-related behavioral development of workers. Within a set of 21 carboxylesterases predicted in the honey bee genome we identified one gene (Amjhe-like) that contained the main functional motifs of insect JHEs. Its transcript levels during larval development showed a maximum at the switch from feeding to spinning behavior, coinciding with a JH titer minimum. In adult workers, the highest levels were observed in nurse bees, where a low JH titer is required to prevent the switch to foraging. Functional assays showed that Amjhe-like expression is induced by JH-III and suppressed by 20-hydroxyecdysone. RNAi-mediated silencing of Amjhe-like gene function resulted in a six-fold increase in the JH titer in adult worker bees. The temporal profile of Amjhe-like expression in larval and adult workers, the pattern of hormonal regulation and the knockdown phenotype are consistent with the function of this gene as an authentic JHE. (C) 2008 Elsevier Inc. All rights reserved.