5 resultados para Kinetic behavior

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new trinuclear gadolinium complex [Gd(3)L(2)(NO(3))(2)(H(2)O)(4)]NO(3)center dot 8H(2)O (1) with the unsymmetrical ligand 2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-bis(2-hydroxy-2-oxoethyl)aminomethyl] phenol (H(3)L) was synthesized and characterized. The new ligand H(3)L was obtained in good yield. Complex I crystallizes in an orthorhombic cell, space group Pcab. Kinetic studies show that complex 1 is highly active in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate (K(m) = 4.09 mM, V(max) = 2.68 x 10(-2) mM s(-1), and k(cat) = V(max)/[1] = 0.67 s(-1)). Through a potentiometric study and determination of the kinetic behavior of 1 in acetonitrile/water solution, the species present in solution could be identified, and a trinuclear monohydroxo species appears to be the most prominent catalyst under mild conditions. Complex 1 displays high efficiency in DNA hydrolytic cleavage, and complete kinetic studies were carried out (K(m) = 4.57 x 10(-4) M, K(cat)` = 3.42 h(-1), and k(cat)`/K(m) = 7.48 x 10(3) M(-1) h(-1)). Studies with a radical scavenger (dimethyl sulfoxide, DMSO) showed that it did not inhibit the activity, indicating the hydrolytic action of 1 in the cleavage of DNA, and studies on the incubation of distamycin with plasmid DNA suggest that 1 is regio-specific, interacting with the minor groove of DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a characterization and study of the pozzolanic behavior between calcium hydroxide (CH) and bamboo leaf ash (BLAsh), which was obtained by calcining bamboo leaves at 600 degrees C for 2 h in a laboratory electric furnace. To evaluate the pozzolanic behavior the conductometric method was used, which is based on the measurement of the electrical conductivity in a BLAsh/CH solution with the reaction time. Later, the kinetic parameters are quantified by applying a kinetic-diffusive model. The kinetic parameters that characterize the process (in particular, the reaction rate constant and free energy of activation) were determined with relative accuracy in the fitting process of the model. The pozzolanic activity is quantitatively evaluated according to the values obtained of the kinetic parameters. Other experimental techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM), were also employed. The results show that this kind of ash is formed by silica with a completely amorphous nature and a high pozzolanic activity. The correlation between the values of free energy of activation (Delta G(#)) and the reaction rate constants (K) are in correspondence with the theoretical studies about the rate processes reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoactivation of a photosensitizer is the initial step in photodynamic therapy (PDT) where photochemical reactions result in the production of reactive oxygen species and eventually cell death. In addition to oxidizing biomolecules, some of these photochemical reactions lead to photosensitizer degradation at a rate dependent on the oxygen concentration among other factors. We investigated photodegradation of Photogem A (R) (28 mu M), a hematoporphyrin derivative, at different oxygen concentrations (9.4 to 625.0 mu M) in aqueous solution. The degradation was monitored by fluorescence spectroscopy. The degradation rate (M/s) increases as the oxygen concentration increases when the molar ratio of oxygen to PhotogemA (R) is greater than 1. At lower oxygen concentrations (< 25 mu M) an inversion of this behavior was observed. The data do not fit a simple kinetic model of first-order dependence on oxygen concentration. This inversion of the degradation rate at low oxygen concentration has not previously been demonstrated and highlights the relationship between photosensitizer and oxygen concentrations in determining the photobleaching mechanism(s). The findings demonstrate that current models for photobleaching are insufficient to explain completely the effects at low oxygen concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal decomposition of salbutamol (beta(2) - selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E(act) = 130 kJ mol(-1) (for standard sample) and E(act) = 252 kJ mol(-1) (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min(-1)). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min(-1)). The calculated values were E(act) = 134 kJ mol(-1) (for standard sample) and E(act) (=) 139 kJ mol(-1) (for pharmaceutical sample).