11 resultados para Karyotype symmetry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ornamental fish culture is important as an economic activity and for biodiversity conservation as well. The species of the genus Trichogaster (Perciformes, Osphronemidae), popularly known as three-spot gourami, are among the several commercial species raised around the world. In the present work, eight specimens of Thrichogaster trichopterus from aquarium trade facilities were analyzed. The karyotype was composed of 23 pairs of subtelo/acrocentric chromosomes. Fluorescent in situ hybridization allowed identifying the 18S ribosomal gene at telomeric region on long arms of the largest acrocentric pair. On the other hand, the 5S rRNA gene is located at a proximal region on a pair of medium-sized chromosomes. Such information is extremely useful in face of the risks of introduction and the development of ornamental fish trade, once many fish species can be identified only by genetic studies.
Resumo:
Despite the widespread distribution of Astyanax bockmanni in streams from Upper Parana River system in central, southeastern, and southern Brazil, just recently, it has been identified as a distinct Astyanax species. Cytogenetic studies were performed in two populations of this species, revealing conservative features. A. bockmanni shows 2n = 50 chromosomes, a karyotypic formula composed of 10 M + 12SM + 12ST + 16A and multiple Ag-NORs. Eight positive signals in subtelocentric/acrocentric chromosomes were identified by fluorescent in situ hybridization (FISH) with 18S rDNA probes. After FISH with 5S rDNA probes, four sites were detected, comprising the interstitial region of a metacentric pair and the terminal region on long arms of another metracentric pair. Little amounts of constitutive heterochromatin were observed, mainly distributed at distal region in two chromosomal pairs. Additionally, heterochromatin was also located close to the centromeres in some chromosomes. No positive signals were detected in the chromosomes of A. bockmanni by FISH with the As-51 satellite DNA probe. The studied species combines a set of characteristics previously identified in two different Astyanax groups. The chromosomal evolution in the genus Astyanax is discussed.
Resumo:
We describe the advertisement call, tadpole, karyotype, and additional information on the natural history of Cycloramphus lutzorum from southern Brazil. Sonograms were generated from digitally recorded calls. Tadpoles were collected in the field for description in the lab, and an adult was collected for karyotyping. Data on seasonal activity were gathered monthly from November 2005 to November 2007. All tadpoles (N = 21), juveniles (N = 18), and adults (N = 52) were found exclusively in streams. Reproduction, as identified by calling frogs, occurred from July through November. Frogs call all day long, but mostly at dusk, from rock crevices inside the stream edges near the splash zone. The call is short and loud, with 11 pulsed notes, of 491-641 ms, with a dominant frequency of 0.98-1.39 kHz. We describe the exotrophic and semiterrestrial tadpoles, always found in constantly humid vertical rock walls in the stream. Tadpoles of C. lutzorum are recognized by differences in labial tooth row formula, eye diameter, body shape, position of nares, and development of tail. Like congeneric species, the karyotype of C. lutzorum comprises 26 metacentric and submetacentric chromosomes. Cycloramphus lutzorum is restricted to and adapted for living in fast flowing streams, many of which are threatened by deforestation, pollution, and habitat loss. Therefore, we recommend the status of C. lutzorum be changed from its current ""Data Deficient"" to ""Near Threatened (NT)"" in the IUCN species red list.
Resumo:
A theory of bifurcation equivalence for forced symmetry breaking bifurcation problems is developed. We classify (O(2), 1) problems of corank 2 of low codimension and discuss examples of bifurcation problems leading to such symmetry breaking.
Resumo:
We show that the S parameter is not finite in theories of electroweak symmetry breaking in a slice of anti-de Sitter five-dimensional space, with the light fermions localized in the ultraviolet. We compute the one-loop contributions to S from the Higgs sector and show that they are logarithmically dependent on the cutoff of the theory. We discuss the renormalization of S, as well as the implications for bounds from electroweak precision measurements on these models. We argue that, although in principle the choice of renormalization condition could eliminate the S parameter constraint, a more consistent condition would still result in a large and positive S. On the other hand, we show that the dependence on the Higgs mass in S can be entirely eliminated by the renormalization procedure, making it impossible in these theories to extract a Higgs mass bound from electroweak precision constraints.
Resumo:
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.
Resumo:
Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.