1 resultado para KNOWLEDGE REPRESENTATION AND REASONING
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (8)
- Academic Research Repository at Institute of Developing Economies (2)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (3)
- Archive of European Integration (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (64)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Boston University Digital Common (2)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (64)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (5)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (13)
- Helda - Digital Repository of University of Helsinki (11)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (6)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (14)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (153)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (24)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal de Uberlândia (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (18)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (4)
- University of Washington (6)
- WestminsterResearch - UK (4)
Resumo:
Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.