35 resultados para K -ATPASE ACTIVITY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated whether changes in protein content and activity of PP-1 and PP-2A were the mechanism underneath the basal age-related reduction in alpha(2/3)-Na,K-ATPase activity in rats cerebella and whether this occurred through the cyclic GMP-PKG pathway. PP1 activity, but not its expression, increased with age, whereas PP-2 was not changed. The activity Of ot2/3-Na,K-ATPase varied with age. and there was a negative association between the PP-1 and alpha(2/3)-Na,K-ATPase activities. In young rats, the inhibition of PP-1 and PP-2A by okadaic acid (OA) increased in a dose-dependent manner alpha(1)- and alpha(2/3)-Na,K-ATPase, but had no effect on Mg-ATPase activity. A direct stimulation of PKG with 8-Br-cyclic GMP did not surmount the effect of OA. This analogue of cyclic GMP inhibited PP-1 activity only, indicating that at least part of the increase in alpha(1)- and alpha(2/3)-Na,K-ATPase activity induced by OA was mediated by the cyclic GMP-PKG-PP-1 cascade. Taking into account that PP1 inhibition increased alpha(2/3)-Na,K-ATPase activity, we propose that an age-related increase in PP-1 activity due to a decrease in cyclic GMP-PKG modulation plays a role for the age-related reduction of alpha(2/3)-Na,K-ATPase activity in rat cerebellum. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Na(+), K(+)-ATPase activity contributes to the regulation of vascular contractility and it has been suggested that vascular Na(+), K(+)-ATPase activity may be altered during the progression of diabetes; however the mechanisms involved in the altered Na(+), K(+)-ATPase activity changes remain unclear. Thus, the aim of the present study was to evaluate ouabain-sensitive Na(+), K(+)-ATPase activity and the mechanism(s) responsible for any alterations on this activity in aortas from 1- and 4-week streptozotocin-pretreated (50 mg kg(-1), i.v.) rats. Main methods: Aortic rings were used to evaluate the relaxation induced by KCl (1-10 mM) in the presence and absence of ouabain (0.1 mmol/L) as an index of ouabain-sensitive Na(+), K(+)-ATPase activity. Protein expression of COX-2 and p-PKC-beta II in aortas were also investigated. Key findings: Ouabain-sensitive Na(+), K(+)-ATPase activity was unaltered following 1-week of streptozotocin administration, but was increased in the 4-week diabetic aorta (27%). Endothelium removal or nitric oxide synthase inhibition with L-NAME decreased ouabain-sensitive Na(+), K(+)-ATPase activity only in control aortas. In denuded aortic rings, indomethacin. NS-398, ridogrel or Go-6976 normalized ouabain-sensitive Na(+), K(+)-ATPase activity in 4-week diabetic rats. In addition, COX-2 (51%) and p-PKC-beta II (59%) protein expression were increased in 4-week diabetic aortas compared to controls. Significance: In conclusion, diabetes led to a time-dependent increase in ouabain-sensitive Na(+), K(+)-ATPase activity. The main mechanism involved in this activation is the release of TxA(2)/PGH(2) by COX-2 in smooth muscle cells, linked to activation of the PKC pathway. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na(+)/K(+)-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na(+)/K(+)-ATPase expression and activity in rats injected with Bothrops alternatus snake venom. Methods: Male Wistar rats were injected with venom (0.8 mg/kg, iv.) and renal function was assessed 6.24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na(+)/K(+)-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively. Results: Venom caused lobulation of the capillary tufts, dilation of Bowman`s capsular space. F-actin disruption in Bowman`s capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na(+)/K(+)-ATPase alpha(1) subunit were increased 6 h post-venom, whereas Na(+)/K(+)-ATPase activity increased 6 h and 24 h post-venom. Conclusions: Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na(+)/K(+)-ATPase expression and activity in the early phase of renal damage. General significance: Enhanced Na(+)/K(+)-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H(2)O(2) release using different substrates and ATP-sensitive K(+) transport activities are increased in mitochondria from animals on high fat diets. The increase in H(2)O(2) release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K(+) channels, indicating it was not related to an observed increase in K(+) transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K(+) transport in mitochondria can be modulated by diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of the, 4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer`s disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon 4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background/Aims: The purpose of this study was to examine the cardiovascular effects of long-term ouabain treatment at different time points. Methods: Systolic blood pressure (SBP) was measured by tail-cuff method in male Wistar rats treated with ouabain (approx. 8.0 mu g.day(-1)) or vehicle for 5, 10 and 20 weeks. Afterwards, vascular function was assessed in mesenteric resistance arteries (MRA) using a wire myograph. ROS production and COX-1 and COX-2, TNF-alpha, and IL-6 protein expression were investigated. Results: SBP was increased by ouabain treatment up to the 6th week and remained stable until the 20th week. However, noradrenaline-induced contraction increased only in MRA in rats treated with ouabain for 20 weeks. NOS inhibition and endothelium removal increased the noradrenaline response, but to a smaller magnitude in MRA in the ouabain group. Moreover, inhibition of COX-2 or incubation with superoxide dismutase restores noradrenaline-induced contraction in the 20-week ouabain group to control levels. ROS production as well as COX-2, IL-6 and TNF-alpha protein expression increased in MRA in this group. Conclusion: Although ouabain treatment induced hypertension in all groups, a larger noradrenaline induced contraction was observed over 20 weeks of treatment. This vascular dysfunction was related to COX-2-derived prostanoids and oxidative stress, increased pro-inflammatory cytokines and reduced NO bioavailability. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na(+) uptake by distal tubules is dependent on Na(+)/H(+). exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H(+)-ATPase and a Cl/HCO(3)(-) exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H(+)-ATPase in series with a basolateral Cl/HCO(3)(-) exchanger, the anion exchanger AE1. Type B IC cells mediate HCO(3)(-) secretion through the apical Cl(-)/HCO(3)(-) exchanger pendrin in series with a H(+)-ATPase at the basolateral membrane. Alternatively, H(+)/K(+)-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In unicellular eukaryotes, such as Saccharomyces cerevisiae, and in multicellular organisms, the replication origin is recognized by the heterohexamer origin recognition complex (ORC) containing six proteins, Orc1 to Orc6, while in members of the domain Archaea, the replication origin is recognized by just one protein, Orc1/Cdc6; the sequence of Orc1/Cdc6 is highly related to those of Orc1 and Cdc6. Similar to Archaea, trypanosomatid genomes contain only one gene encoding a protein named Orc1. Since trypanosome Orc1 is also homologous to Cdc6, in this study we named the Orc1 protein from trypanosomes Orc1/Cdc6. Here we show that the recombinant Orc1/Cdc6 from Trypanosoma cruzi (TcOrc1/Cdc6) and from Trypanosoma brucei (TbOrc1/Cdc6) present ATPase activity, typical of prereplication machinery components. Also, TcOrc1/Cdc6 and TbOrc1/Cdc6 replaced yeast Cdc6 but not Orc1 in a phenotypic complementation assay. The induction of Orc1/Cdc6 silencing by RNA interference in T. brucei resulted in enucleated cells, strongly suggesting the involvement of Orc1/Cdc6 in DNA replication. Orc1/Cdc6 is expressed during the entire cell cycle in the nuclei of trypanosomes, remaining associated with chromatin in all stages of the cell cycle. These results allowed us to conclude that Orc1/Cdc6 is indeed a member of the trypanosome prereplication machinery and point out that trypanosomes carry a prereplication machinery that is less complex than other eukaryotes and closer to archaea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely. E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brachycephalus hermogenesi is an endemic leaf litter inhabitant of the Atlantic forest of southeastern Brazil, whose original distribution included a restricted area near the boundaries of the States of Sao Paulo and Rio de Janeiro. We were surprised to find out, while conducting herpetofaunal surveys at Estacao Biologica de Boraceia (EBB), that the background forest insect-like sound we have been searching for corresponded to calling individuals of the species. Males call during the day at high densities, hidden under the leaf litter. Individuals do not answer playback, seem to move very infrequently, and seem to ignore nearby calling activity. We gathered data on annual and daily vocal activity of the species at EBB, observing a total of 1,549 calls given by 31 focal individuals in November 2003 and 2005. The call varies from short single note calls to calls composed of groups of two to seven similar notes emitted at regular intervals. We also extend the known distribution of the species southward to the State of Sao Paulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.