8 resultados para Jurassic

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Base-level maps (or ""isobase maps"", as originally defined by Filosofov, 1960), express a relationship between valley order and topography. The base-level map can be seen as a ""simplified"" version of the original topographic surface, from which the ""noise"" of the low-order stream erosion was removed. This method is able to identify areas with possible tectonic influence even within lithologically uniform domains. Base-level maps have been recently applied in semi-detail scale (e.g., 1:50 000 or larger) morphotectonic analysis. In this paper, we present an evaluation of the method's applicability in regional-scale analysis (e.g., 1:250 000 or smaller). A test area was selected in northern Brazil, at the lower course of the Araguaia and Tocantins rivers. The drainage network extracted from SRTM30_PLUS DEMs with spatial resolution of approximately 900 m was visually compared with available topographic maps and considered to be compatible with a 1:1,000 000 scale. Regarding the interpretation of regional-scale morphostructures, the map constructed with 2nd and 3rd-order valleys was considered to present the best results. Some of the interpreted base-level anomalies correspond to important shear zones and geological contacts present in the 1:5 000 000 Geological Map of South America. Others have no correspondence with mapped Precambrian structures and are considered to represent younger, probably neotectonic, features. A strong E-W orientation of the base-level lines over the inflexion of the Araguaia and Tocantins rivers, suggest a major drainage capture. A N-S topographic swath profile over the Tocantins and Araguaia rivers reveals a topographic pattern which, allied with seismic data showing a roughly N-S direction of extension in the area, lead us to interpret this lineament as an E-W, southward-dipping normal fault. There is also a good visual correspondence between the base-level lineaments and geophysical anomalies. A NW-SE lineament in the southeast of the study area partially corresponds to the northern border of the Mosquito lava field, of Jurassic age, and a NW-SE lineament traced in the northeastern sector of the study area can be interpreted as the Picos-Santa Ines lineament, identifiable in geophysical maps but with little expression in hypsometric or topographic maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Pora Arch, a NE-trending structural feature, and has the Cerro Sarambi and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazu and the small bodies of Cerro Apua, Arroyo Gasory, Cerro Jhu, Cerro Tayay, and Cerro Teyu. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO(2) concentration for the Cerro Sarambi rocks show positive correlations for Al(2)O(3), K(2)O, and Rb, and negative ones for TiO(2), MgO, Fe(2)O(3), CaO, P(2)O(5), and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have T(DM) model ages that vary from 1.6 to 1.1 Ga. suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambi rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report 6 K-Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K-Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K-Ar ages in these sites are of Early (196.5 +/- 4.9 Ma) to early Late Jurassic age (156.6 +/- 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K-Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = -18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean ""in situ"" direction for the SOC is Dec: 286.9 degrees, Inc: -58.5 degrees, alpha-95: 6.9 degrees, N: 11 (sites). Rock magnetic properties, petrography and whole-rock K-Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous. The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50 degrees is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30 degrees westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marajo Island is located in a passive continental margin that evolved from rifting associated with the opening of the Equatorial South Atlantic Ocean in the Late Jurassic/Early Cretaceous period. This study, based on remote sensing integrated with sedimentology, as well as subsurface and seismographic data available from the literature, allows discussion of the significance of tectonics during the Quaternary history of marginal basins. Results show that eastern Marajo Island contains channels with evidence of tectonic control. Mapping of straight channels defined four main groups of lineaments (i.e. NNE-SSW, NE-SW, NW-SE and E-W) that parallel main normal and strike-slip fault zones recorded for the Amazon region. Additionally, sedimentological studies of late Quaternary and Holocene deposits indicate numerous ductile and brittle structures within stratigraphic horizons bounded by undeformed strata, related to seismogenic deformation during or shortly after sediment deposition. This conclusion is consistent with subsurface Bouguer mapping suggestive of eastern Marajo Island being still part of the Marajo graben system, where important fault reactivation is recorded up to the Quaternary. Together with the recognition of several phases of fault reactivation, these data suggest that faults developed in association with rift basins might remain active in passive margins, imposing important control on development of depositional systems. Copyright (C) 2007 John Wiley & Sons, Ltd.