3 resultados para Junction grouping

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vesicourethral junction comprising the vesical trigone, is relevant in setting and positioning of the urinary bladder, along with the vesical neck, fixed by lateral ligaments of the bladder and tendinous arch of the pelvis fascia. Namely, the puboprostatic ligament (men) and the pubovesical (women). The circular set elastic fibers in this junction are important and valuable in the elasticity and plasticity of the area, allowing quick expansion and withdrawal with the flow of urine, and associated to smooth muscle tissue and nerve control form an important collective to maintain urinary continence. The objective of the present study is to describe the elastic system in the vesicouretral junction in relation to aging and its involvement in the states of urinary continence and incontinence, as well as the study of the vesicouretral junction in various age groups while evaluating with electron transmission microscopy. To carry out the study, 12 Wistar rats were used, divided into groups: neonate (4 animals), adult group (4 animals) and aged group (4 animals). Electron transmission microscopy with use of tanic acid technique associated to glutaraldehyde fixation, satisfactorily showed the extreme structural differences between mature elaunin and oxytalan fibers present between intercelular spaces and bundles of collagen fibers. The phases of elastogenesis in neonate animals and degradation of the elastic system of older animals were also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work [M. Mandaji, et al., this issue] a sample stacking method was theoretically modeled and experimentally demonstrated for analytes with low dpK(a)/dT (analytes carrying carboxylic groups) and BGEs with high dpH/dT (high pH-temperature-coefficients). In that work, buffer pH was modulated with temperature, inducing electrophoretic mobility changes in the analytes. In the present work, the opposite conditions are studied and tested, i.e. analytes with high dpK(a)/dT and BGEs that exhibit low dpH/dT. It is well known that organic bases such as amines, imidazoles, and benzimidazoles exhibit high dpK(a)/dT. Temperature variations induce instantaneous changes on the basicity of these and other basic groups. Therefore, the electrophoretic velocity of some analytes changes abruptly when temperature variations are applied along the capillary. This is true only if BGE pH remains constant or if it changes in the opposite direction of pK(a) of the analyte. The presence of hot and cold sections along the capillary also affects local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band stacking efficacy was also taken into account in the theoretical model presented. Finally, this stacking method is demonstrated for lysine partially derivatized with naphthalene-2,3-dicarboxaldehyde. In this case, the amino group of the lateral chain was left underivatized and only the alpha amino group was derivatized. Therefore, the basicity of the lateral amino group, and consequently the electrophoretic mobility, was modulated with temperature while the pH of the buffer used remained unchanged.