2 resultados para Jr11 Jr31,31
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to investigate the presence and prevalence of bla(TEM), bla(SHV), and bla(CTX-M) and bla(GES)-like genes, responsible for extended spectrum beta-lactamases (ESBLs) production in clinical isolates of Klebsiella pneumoniae collected from a Brazilian tertiary care hospital. Sixty-five ESBL producing K. pneumoniae isolates, collected between 2005 and 2007, were screened by polymerase chain reaction (PCR). Identification of bla genes was achieved by sequencing. Genotyping of ESBL producing K. pneumoniae was performed by the enterobacterial repetitive intergenic consensus-PCR with cluster analysis by the Dice coefficient. The presence of genes encoding ESBLs was confirmed in 59/65 (90.8%) isolates, comprising 20 bla(CTX-M-2), 14 bla(CTX-M-59), 12 bla(CTX-M-15), 9 bla(SHV-12), 1 bla(SHV-2), 1 bla(SHV-2a), 1 bla(SHV-5), and 1 bla(SHV-31) genes. The ESBL genes bla(SHV-12), bla(SHV-31), and bla(CTX-M-15), and the chromosome-encoded SHV-type beta-lactamase capable of hydrolyzing imipenem were detected in Brazil for the first time. The analysis of the enterobacterial repetitive intergenic consensus-PCR band patterns revealed a high rate of multiclonal bla(CTX-M) carrying K. pneumoniae isolates (70.8%), suggesting that dissemination of encoding plasmids is likely to be the major cause of the high prevalence of these genes among the K. pneumoniae isolates considered in this study.
Resumo:
In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.