6 resultados para Joe McKendry

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and insulin resistance are highly correlated with metabolic disturbances. Both the excess and lack of adipose tissue can lead to severe insulin resistance and diabetes. Adipose tissue plays an active role in energy homeostasis, hormone secretion, and other proteins that affect insulin sensitivity, appetite, energy balance, and lipid metabolism. Rats with streptozotocin-induced diabetes during the neonatal period develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, and insulin resistance in adulthood. Low body weight and reduced epididymal (EP) fit mass were also seen in this model. The am) of this study was to investigate the glucose homeostasis and metabolic repercussions on the adipose tissue following chronic treatment with antidiabetic drugs in these animals. In the 4th week post birth, diabetic animals started an 8-week treatment with pioglitazone, metformin, or insulin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin replacement is the only effective therapy to manage hyperglycemia in type 1 diabetes mellitus (T1DM). Nevertheless, intensive insulin therapy has inadvertently led to insulin resistance. This study investigates mechanisms involved in the insulin resistance induced by hyperinsulinization. Wistar rats were rendered diabetic by alloxan injection, and 2 weeks later received saline or different doses of neutral protamine Hagedorn insulin (1.5, 3, 6, and 9 U/day) over 7 days. Insulinopenic-untreated rats and 6U- and 9U-treated rats developed insulin resistance, whereas 3U-treated rats revealed the highest grade of insulin sensitivity, but did not achieve good glycemic control as 6U- and 9U-treated rats did. This insulin sensitivity profile was in agreement with glucose transporter 4 expression and translocation in skeletal muscle, and insulin signaling, phosphoenolpyruvate carboxykinase/glucose-6-phosphatase expression and glycogen storage in the liver. Under the expectation that insulin resistance develops in hyperinsulinized diabetic patients, we believe insulin sensitizer approaches should be considered in treating T1DM. Journal of Endocrinology (2011) 211, 55-64

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNF alpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity. Journal of Endocrinology (2010) 206, 65-74

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. lit the Present Study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta 2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-P-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta 2 proteins, enhanced P70S6K and MAIIK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264