2 resultados para Jackie Gill
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The gills contain essential cells for respiration and osmoregulation, whereas the hepatopancreas is the site of digestion, absorption, and nutrients storage. The aim of this work was to separate and characterize gill and hepatopancreatic cells of the mangrove crab, Ucides cordatus. For gills, the methodology consisted of an enzymatic cellular dissociation using Trypsin at 0.5%, observation of cellular viability with Tripan Blue, and separation of cells using discontinuous sucrose gradient at concentrations of 10%, 20%, 30%, and 40%. The hepatopancreatic cells were dissociated by magnetic stirring, with posterior separation by sucrose gradient at the same concentrations above. For gills, a high cellular viability was observed (92.5 +/- 2.1%), with hemocyte cells in 10% sucrose layer (57.99 +/- 0.17%, *P < 0.05), principal cells in the 20% sucrose layer (57.33 +/- 0.18, *P < 0.05), and thick cells and pillar cells in the 30% and 40% sucrose layers, respectively (39.54 +/- 0.05%, *P < 0.05; and 41.81 +/- 0.04%, *P < 0.05). The hepatopancreatic cells also showed good viability (79.22 +/- 0.02%), with the observation of embryonic (E) cells in the 10% sucrose layer (67.87 +/- 0.06%, **P < 0.001), resorptive (R) and fibrillar (F) cells in the 20% and 30% sucrose layers (44.71 +/- 0.06%, **P < 0.001, and 43.25 +/- 0.01%, *P < 0.05; respectively), and blister (B) cells in the 40% sucrose layer (63.09 +/- 0.03%, **P < 0.001). The results are a starting point for in vitro studies of heavy metal transport in isolated cells of the mangrove crab U. cordatus, subjected to contamination by metals in the mangrove habitat where they are found.
Resumo:
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in (65)Zn(2+) in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 mu M verapamil, nifedipine, and the calcium ionophore A23187. (65)Zn(2+) influxes were hyperbolic functions of zinc concentration (1-1,000 mu M) and followed Michaelis-Menten kinetics. Calcium reduced both apparent zinc binding affinity (K (m)) and maximal transport velocity (J (max)) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. (65)Zn(2+) transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.