5 resultados para JERSEY COWS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In order to assess the influence of the colostrum period on pH and, electrical conductivity, we collected 418 milk samples from 127 Jersey cows. The samples were collected from healthy udders that did not present any bacterial growth in the microbiological examination. They were divided into eight groups as follows < 1/2 day; 1/2 and 1 degrees day; 2 degrees day; 3 degrees day; 4 degrees and 5 degrees day; 6 degrees and 7 degrees day; 8 degrees to 15 degrees day; 16 degrees to 30 degrees days of lactation. The samples were collected before milking and the following analyses were conducted: pH, electrical conductivity. In the first 24 hours of lactation, there was an reduction in electrical conductivity value, associated with an increase in pH value. We observed that transition of secretion from colostrum to milk, occurs during the first week of lactation; from 6(rd) day of lactation for pH value and 3(th) day for electrical conductivity value. We recommend the use the following figures as normal ranges for the first 24 hours of lactation (colostrum period): pH <= 6,51 and electrical conductivity <= 6,33 mS/cm; while for the interval between 2(nd) and 7(th) days of lactation (transition from colostrum to milk) we suggest the use of the values as normal ranges: pH <= 6,66 and electrical conductivity <= 5,93 mS/cm.
Resumo:
Influences of inbreeding on daily milk yield (DMY), age at first calving (AFC), and calving intervals (CI) were determined on a highly inbred zebu dairy subpopulation of the Guzerat breed. Variance components were estimated using animal models in single-trait analyses. Two approaches were employed to estimate inbreeding depression: using individual increase in inbreeding coefficients or using inbreeding coefficients as possible covariates included in the statistical models. The pedigree file included 9,915 animals, of which 9,055 were inbred, with an average inbreeding coefficient of 15.2%. The maximum inbreeding coefficient observed was 49.45%, and the average inbreeding for the females still in the herd during the analysis was 26.42%. Heritability estimates were 0.27 for DMY and 0.38 for AFC. The genetic variance ratio estimated with the random regression model for CI ranged around 0.10. Increased inbreeding caused poorer performance in DMY, AFC, and CI. However, some of the cows with the highest milk yield were among the highly inbred animals in this subpopulation. Individual increase in inbreeding used as a covariate in the statistical models accounted for inbreeding depression while avoiding overestimation that may result when fitting inbreeding coefficients.
Resumo:
This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.
Resumo:
There are several different milking management systems in Latin America, because Gir cattle are reputed to be easily stressed and not well adapted to machine-milking. This paper, therefore, provides an overview of hormone release and behavior during suckling and milking in Gir cows and their crossbred offspring. Several experiments were performed to study oxytocin release during exclusive suckling or exclusive hand- and machine-milking, oxytocin, and prolactin release during a mixed suckling-milking system and oxytocin release after weaning. Cortisol concentrations and behavior were also examined. Concentration of oxytocin, released during suckling, and both types of milking were high, but the maximum concentration measured during suckling was significantly greater than that observed during exclusive milking. In the mixed suckling-milking system, the greatest oxytocin and prolactin releases were measured during suckling. Cortisol concentrations measured before, during, and after milking demonstrated that Gir x Holstein and Holstein cows were not stressed. On the other hand, although Gir had greater concentrations of cortisol, the percentage of residual milk for Gir cows was less than for dairy cows exposed to different stressful situations. In general, Gir cows and their crossbred offspring adapted to machine-milking, although these breeds can react negatively to milkers. Gir, Gir x Holstein, and Holstein cows all had similar cortisol levels during and after milking.
Resumo:
The aim of this study was to evaluate the effects of substituting soybean meal for urea on milk protein fractions (casein, whey protein and non-protein nitrogen) of dairy cows in three dietary levels. Nine mid-lactation Holstein cows were used in a 3 x 3 Latin square arrangement, composed of 3 treatments, 3 periods of 21 days each, and 3 squares. The treatments consisted of three different diets fed to lactating cows, which were randomly assigned to three groups of three animals: (A) no urea inclusion, providing 100% of crude protein (CP), rumen undegradable protein (RUP) and rumen degradable protein (RDP) requirements, using soybean meal and sugarcane as roughage; (B) urea inclusion at 7.5 g/kg DM in partial substitution of soybean meal CP equivalent; (C) urea inclusion at 15 g/kg DM in partial substitution of soybean meal CP equivalent. Rations were isoenergetic and isonitrogenous-1 60 g/kg DM of crude protein and 6.40 MJ/kg DM of net energy for lactation. When the data were analyzed by simple polynomial regression, no differences were observed among treatments in relation to milk CP content, true protein, casein, whey protein, non-casein and non-protein nitrogen, or urea. The milk true protein:crude protein and casein:true protein ratios were not influenced by substituting soybean meal for urea in the diet. Based on the results it can be concluded that the addition of urea up to 15 g/kg of diet dry matter in substitution of soybean meal did not alter milk protein concentration casein, whey protein and its non-protein fractions, when fed to lactating dairy cows. (c) 2007 Elsevier B.V. All rights reserved.