6 resultados para Isotope
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation(1). High partial pressures of atmospheric CO(2) (p(CO2); from 20,000 to 90,000 p. p. m. v.) in the aftermath of the Marinoan glaciation (similar to 635 Myr ago) have been inferred from both boron and triple oxygen isotopes(2,3). These p(CO2) values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise(1). The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units(4-8), provide p(CO2) estimates lower than 3,200 p. p. m. v.-and possibly as low as the current value of similar to 400 p. p. m. v. Our new constraint, and our reinterpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.
Resumo:
The Corumba Group cropping out in the southern Paraguay Belt in Brazil is one of the most complete Ediacaran sedimentary archives of palaeogeographic climatic biogeochemical and biotic evolution in southwestern Gondwana The unit hosts a rich fossil record including acritarchs vendotaenids (Vendo taenia Eoholynia) soft-bodied metazoans (Corumbella) and skeletal fossils (Cloudina Titanotheca) The Tamengo Formation made up mainly of limestones and marls provides a rich bio- and chemostratigraphic record Several outcrops formerly assigned to the Cuiaba Group are here included in the Tamengo Formation on the basis of lithological and chemostratigraphical criteria High-resolution carbon isotopic analyses are reported for the Tamengo Formation showing (from base to top) (1) a positive delta(13)C excursion to +4 parts per thousand PDB above post-glacial negative values (2) a negative excursion to -3 5 parts per thousand associated with a marked regression and subsequent transgression (3) a positive excursion to +5 5 parts per thousand and (4) a plateau characterized by delta(13)C around +3 parts per thousand A U-Pb SHRIMP zircon age of an ash bed Interbedded in the upper part of the delta(13)C positive plateau yielded 543 +/- 3 Ma which is considered as the depositional age (Babinski et al 2008a) The positive plateau in the upper Tamengo Formation and the preceding positive excursion are ubiquitous features in several successions worldwide including the Nama Group (Namibia) the Dengying Formation (South China) and the Nafun and Ara groups (Oman) This plateau is constrained between 542 and 551 Ma thus consistent with the age of the upper Tamengo Formation The negative excursion of the lower Tamengo Formation may be correlated to the Shuram-Wonoka negative anomaly although delta(13)C values do not fall beyond -3 5 parts per thousand in the Brazilian sections Sedimentary breccias occur just beneath this negative excursion in the lower Tamengo Formation One possible interpretation of the origin of these breccias is a glacioeustatic sea-level fall but a tectonic interpretation cannot be completely ruled out Published by Elsevier B V
Resumo:
The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05% per atomic mass unit. The method was tested on aerosols collected in Sin Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37% in coarse and between -1.04 and 0.02% in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta 66Z(Imperial) = 0.26 +/- 0.10%).
Resumo:
Neodymium and lead isotope values in sediment samples were used to interpret sediment transport and source rocks on the Southeastern South American upper margin. The sediments of the Argentinian margin exhibit an average epsilon(Nd) value of -1.9, indicating the influence of the Andean rocks as sediment sources. Sediments from the Rio de La Plata estuary show an average epsilon(Nd) value of -9.6 which is similar to that of the Southern Brazilian Upper Margin. Finally, sediments of Southeastern Brazil, which are associated with the transport of the Brazil Current exhibit an average epsilon(Nd) of -13.0. The Pb isotope signatures also confirm the differentiation of source rocks in the sedimentation of the study area. In addition, Pb isotopes helped to establish the extent of the influence of the Rio de La Plata on the sedimentation of the Southern Brazilian margin. In terms of Pb isotopes the sediments from the Rio de La Plata estuary and Southern Brazil are more radiogenic than those of Southeastem Brazil and the Argentinian margin. (c) 2007 Elsevier B.V. All rights reserved.