14 resultados para Isopropyl alcohol
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ba0.77Ca0.23TiO3 (BCT23) nanometric powders, synthesized by the modified Pechini method, were used as precursor to produce thick films (50-130 mu m) employing the electrophoretic deposition (EPD) technique. The BCT23 powder presented a single crystalline phase with an average particle size and a crystallite size of similar to 60 nm and similar to 20 nm, respectively, when calcined at 800 degrees C/2h. BCT23 thick films were deposited on platinum substrates starting from different suspensions prepared by dispersion of the powder into: isopropyl alcohol (IPA) or a mixture of acetylacetone (Acac) and ethanol (EtOH) (1:1, volumetric ratio). A milling process was used to deagglomerate the powders in order to increase the suspension stability and improving the deposition. Dense and crack free thick films with uniform microstructure were obtained after sintering at 1300 degrees C/2 h from Acac+EtOH solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to study the effect of the poly(vinyl alcohol) (PVA) concentration on the thermal and viscoelastic properties of films based on blends of gelatin and PVA using differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA). One glass transition was observed between 43 and 49 degrees C on the DSC curves obtained in the first scanning of the blended films, followed by fusion of the crystalline portion between 116 and 134 degrees C. However, the DMA results showed that only the films with 10% PVA had a single peak in the tan 5 spectrum. However, when the PVA concentration was increased the dynamic mechanical spectra showed two peaks on the tan 6 curves, indicating two T(g)s. Despite this phase separation behavior the Gordon and Taylor model was successfully applied to correlate T, as a function of film composition, thus determining k = 7.47. In the DMA frequency tests, the DMA spectra showed that the storage modulus values decreased with increasing temperature. The master curves for the PVA-gelatin films were obtained applying the TTS principle (T(r) = 100 degrees C). The WLF model was thus applied allowing for the determination of the constants C(1) and C(2). The values of these constants increased with increasing PVA concentrations in the blend: C(1) = 49-66 and C(2) = 463-480. These values were used to calculate the fractional free volume of the films at the T(g) and the thermal expansion coefficient of the films above the T(g). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.
Resumo:
Patients with chronic pancreatitis may have abnormal gastrointestinal transit, but the factors underlying these abnormalities are poorly understood. Gastrointestinal transit was assessed, in 40 male outpatients with alcohol-related chronic pancreatitis and 18 controls, by scintigraphy after a liquid meal labeled with (99m)technetium-phytate. Blood and urinary glucose, fecal fat excretion, nutritional status, and cardiovascular autonomic function were determined in all patients. The influence of diabetes mellitus, malabsorption, malnutrition, and autonomic neuropathy on abnormal gastrointestinal transit was assessed by univariate analysis and Bayesian multiple regression analysis. Accelerated gastrointestinal transit was found in 11 patients who showed abnormally rapid arrival of the meal marker to the cecum. Univariate and Bayesian analysis showed that diabetes mellitus and autonomic neuropathy had significant influences on rapid transit, which was not associated with either malabsorption or malnutrition. In conclusion, rapid gastrointestinal transit in patients with alcohol-related chronic pancreatitis is related to diabetes mellitus and autonomic neuropathy.
Resumo:
Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with Surface pressure measurements; and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.
Resumo:
The selective determination of alcohol molecules either in aqueous solutions or in vapor phase is of great importance for several technological areas. In the last years, a number of researchers have reported the fabrication of highly sensitive sensors for ethanol detection, based upon specific enzymatic reactions occurring at the surface of enzyme-containing electrodes. In this study, the enzyme alcohol dehydrogenase (ADH) was immobilized in a layer-by-layer fashion onto Au-interdigitated electrodes (IDEs), in conjunction with layers of PAMAM dendrimers. The immobilization process was followed in Teal time using quartz crystal microbalance (QCM), indicating that an average mass of 52.1 ng of ADH was adsorbed at each deposition step. Detection was carried out using a novel strategy entirely based upon electrical capacitance measurements, through which ethanol could be detected at concentrations of 1 part per million by volume (ppmv). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3: 1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of zeta-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of zeta-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.
Resumo:
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T (onset) value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T (peak DTG)) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.
Resumo:
In this paper we describe the electrosynthesis of poly[(2-bromo-5-hexyloxy- 1,4-phenylenevinylene)-co-(1,4-phenylenevinylene)] (BHPPV-co-PPV), a novel conducting copolymer, and its application as active layer of a chemiresistive gas sensor suitable for quantification of ethanol present in ethanol-gasoline mixtures normally present in the fuel tanks of flex-fuel vehicles. This information is crucial for the smooth operation of the engine since it permits optimal air:fuel ratio regulation. The sensor consists of an interdigitated electrode coated with a thin polymer film doped with dodecylbenzenesulfonic acid. On exposure to fuel vapours at room temperature, the device presents a linear correlation between its electrical conductance and the ethanol concentration in the fuel. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and an environmental estrogen. The aim of this work was to verify the degradation the alachlor by gamma radiation. Gamma radiation from (60)Co was used to degrade the alachlor herbicide in water and methanol solution. The alachlor in water and alcohol solution in the concentration of 100 mgL(-1) was irradiated with doses of 0.25-50 kGy, at dose rate 5-6 and 2.7 kGyh(-1). High performance liquid chromatography was used as an analytical technique to determine the degradation rate of herbicide studied.