124 resultados para Iron-reducing bacteria
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Resumo:
Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic-suboxic), Bg (suboxic), Cri (anoxic with low concentration of pyrite Fe) and Cr-2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr-2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr-2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr-1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr-2 were related to Deltaproteo-bacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr-2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
This paper describes the performance and biofilm characteristics of a full-scale anaerobic sequencing batch biofilm reactor (ASBBR; 20 m(3)) containing biomass immobilized on an inert support (mineral coal) for the treatment of industrial wastewater containing a high sulfate concentration. The ASBBR reactor was operated during 110 cycles (48 h each) at sulfate loading rates ranging from 6.9 to 62.4 kgSO(4)(2-)/cycle corresponding to sulfate concentrations of 0.58-5.2 gSO(4)(2-)/L. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. After 71 cycles the mean sulfate removal efficiency was 99%, demonstrating a high potential for biological sulfate reduction. The biofilm formed in the reactor occurred in two different patterns, one at the beginning of the colonization and the other of a mature biofilm. These different colonization patterns are due to the low adhesion of the microorganisms on the inert support in the start-up period. The biofilm population is mainly made up of syntrophic consortia among sulfate-reducing bacteria and methanogenic archaea such as Methanosaeta spp.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A pilot-scale (1.2 m(3)) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65-1.90 kgSO(4)(2-)/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO(4)(2-) l(-1). Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO(4)(2-) l(-1). At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO(4)(2-) l(-1), whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO(4)(2-) l(-1). These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea(Methanosaeta spp.)was found at 1.0 and 2.0 gSO(4)(2-) l(-1). Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Linear alkylbenzene sulfonate (LAS) is an anionic surfactant widely used to manufacture detergents and found in domestic and industrial wastewater. LAS removal was evaluated in a horizontal anaerobic immobilized biomass reactor. The system was filled with polyurethane foam and inoculated with sludge that was withdrawn from an up flow anaerobic sludge blanket reactor that is used to treat swine wastewater. The reactor was fed with easily degradable substrates and a solution of commercial LAS for 313 days. The hydraulic retention time applied was 12 h. The system was initially operated without detergent and resulted to 94% reduction of demand. The mass balance in the system indicated that the LAS removal efficiency was 45% after 180 days. From the 109th day to the 254th day, a removal efficiency of 32% was observed. The removal of LAS was approximately 40% when 1500 mg of LAS were applied in the absence of co-substrates suggesting that the LAS molecules were used selectively. Microscopic analyses of the biofilm revealed diverse microbial morphologies and denaturing gradient gel electrophoresis profiling showed variations in the total bacteria and sulfate-reducing bacteria populations. 16S rRNA sequencing and phylogenetic analyses demonstrated that members of the order Clostridiales were the major components of the bacterial community in the last step of the reactor operation. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, RI and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5,1.0, 2.0 and 3.0 g SW(4)(2-)L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-)L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-)L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1)of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of similar to 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.
Resumo:
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Aims: The main objective of this study was to evaluate the behaviour of the brown-rot fungus Wolfiporia cocos under differential iron availability. Methods and Results: W. cocos was grown under three differential iron conditions. Growth, catecholate and hydroxamate production, and mycelial and extracellular Fe3+-reducing activities were determined. Iron starvation slowed fungal growth and accelerated pH decline. Some mycelial proteins of low molecular weight were repressed under iron restriction, whereas others of high molecular weight showed positive iron regulation. Mycelial ferrireductase activity decreased as culture aged, while Fe3+-reducing activity of low molecular reductants constantly increased. Hydroxamates production suffered only limited iron repression, whereas catecholates production showed to be more iron repressible. Conclusions: W. cocos seems to possess more than one type of iron acquisition mechanism; one involving secretion of organic acids and ferrireductases and/or extracellular reductants, and another relying on secretion of catecholates and hydroxamates chelators. Significance and Impact of the Study: This paper is the first to report the kinetic study of brown-rot fungus grown under differential iron availability, and the information provided here contributes to address more traditional problems in protecting wood from brown decay, and also makes a contribution in the general area of the physiology of brown-rot fungi.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.