3 resultados para Internet security applications

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Security administrators face the challenge of designing, deploying and maintaining a variety of configuration files related to security systems, especially in large-scale networks. These files have heterogeneous syntaxes and follow differing semantic concepts. Nevertheless, they are interdependent due to security services having to cooperate and their configuration to be consistent with each other, so that global security policies are completely and correctly enforced. To tackle this problem, our approach supports a comfortable definition of an abstract high-level security policy and provides an automated derivation of the desired configuration files. It is an extension of policy-based management and policy hierarchies, combining model-based management (MBM) with system modularization. MBM employs an object-oriented model of the managed system to obtain the details needed for automated policy refinement. The modularization into abstract subsystems (ASs) segment the system-and the model-into units which more closely encapsulate related system components and provide focused abstract views. As a result, scalability is achieved and even comprehensive IT systems can be modelled in a unified manner. The associated tool MoBaSeC (Model-Based-Service-Configuration) supports interactive graphical modelling, automated model analysis and policy refinement with the derivation of configuration files. We describe the MBM and AS approaches, outline the tool functions and exemplify their applications and results obtained. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cryptography method based on the Lorenz`s attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The InteGrade middleware intends to exploit the idle time of computing resources in computer laboratories. In this work we investigate the performance of running parallel applications with communication among processors on the InteGrade grid. As costly communication on a grid can be prohibitive, we explore the so-called systolic or wavefront paradigm to design the parallel algorithms in which no global communication is used. To evaluate the InteGrade middleware we considered three parallel algorithms that solve the matrix chain product problem, the 0-1 Knapsack Problem, and the local sequence alignment problem, respectively. We show that these three applications running under the InteGrade middleware and MPI take slightly more time than the same applications running on a cluster with only LAM-MPI support. The results can be considered promising and the time difference between the two is not substantial. The overhead of the InteGrade middleware is acceptable, in view of the benefits obtained to facilitate the use of grid computing by the user. These benefits include job submission, checkpointing, security, job migration, etc. Copyright (C) 2009 John Wiley & Sons, Ltd.