8 resultados para Intergranular fracture
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments. Int J Prosthodont 2009;22:283-286.
Resumo:
Zygomatic arch fractures often occur as part of a zygoma fracture or Le Fort type III fractures of the maxillary. Isolated fractures of the zygomatic arch comprise around 10% of all zygoma fractures. The main etiologic factors are traffic accidents, falls, assaults, and sport accidents. Treatment may involve minimally invasive surgical procedures for slightly dislocated fractures or surgery with more extensive access for large dislocations of bone segments. This article reports the case of a 41-year-old male victim of physical aggression to the face with a steel sickle with an exposed, unstable fracture of the zygomatic arch. The patient underwent general anesthesia, and after the reduction of the fractures, the bone segments were fixed with 2.0-mm screws.
Resumo:
This retrospective study evaluated the epidemiology, treatment and complications of mandibular fracture associated, or not associated, with other facial fractures, when the influence of the surgeon`s skill and preference for ally rigid internal fixation (RIF) system devices was minimized. The files of 700 patients with facial trauma were available, and 126 files were chosen for review. Data were collected regarding gender, age, race, date of trauma, date of surgery, addictions, etiology, signs and symptoms, fracture area, complications, treatment performed, date of hospital discharge.. and medication. 126 patients suffered mandibular fractures associated, or not, with other maxillofacial fractures, and a total of 201 mandibular fractures were found. The incidence of mandibular fractures was more prevalent in males, in Caucasians and during the third decade of life. The most common site was the condyle, followed by the mandibular body. The therapy applied was effective in handling this type of fracture and the Success rates were comparable with other published data.
Resumo:
The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0 mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1 mm of displacement, no statistically significant difference was found. At 2 mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.
Resumo:
This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The prevalence and risk factors of radiographic vertebral fracture were determined among Brazilian community-dwelling elderly. Vertebral fractures were a common condition in this elderly population, and lower hip bone mineral density was a significant risk factor for vertebral fractures in both genders. The aim of the study was to estimate the prevalence of radiographic vertebral fracture and investigate factors associated with this condition in Brazilian community-dwelling elderly. This cross-sectional study included 943 elderly subjects (561 women and 382 men) living in So Paulo, Brazil. Thoracic and lumbar spine radiographs were obtained, and vertebral fractures were evaluated using Genant`s semiquantitative method. Bone mineral density (BMD) was measured by dual X-ray absorptiometry, and bone biochemical markers were also evaluated. Female and male subjects were analyzed independently, and each gender was divided into two groups based on whether vertebral fractures were present. The prevalence of vertebral fracture was 27.5% (95% CI 23.8-31.1) in women and 31.8% in men (95% CI 27.1-36.5) (P = 0.116). Cox regression analyses using variables that were significant in the univariate analysis showed that age (prevalence ratio = 1.03, 95% CI 1.01-1.06; p = 0.019) and total femur BMD (PR = 0.27, 95% CI 0.08-0.98; p = 0.048) were independent factors in predicting vertebral fracture for the female group. In the male group, Cox regression analyses demonstrated that femoral neck BMD (PR = 0.26, 95% CI 0.07-0.98; p = 0.046) was an independent parameter in predicting vertebral fractures. Our results suggest that radiographic vertebral fractures are common in Brazilian community-dwelling elderly and that a low hip BMD was an important risk factor for this condition in both genders. Age was also significantly correlated with the presence of vertebral fractures in women.
Resumo:
We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.
Resumo:
We performed measurements of electrical resistivity as a function of temperature, rho(T), in polycrystalline samples of YBa(2)Cu(3)O(7-delta) (Y-123) subjected to different uniaxial compacting pressures. We observed by using X-ray diffractometry that samples have a very similar composition. Most of the identified peaks are related to the superconducting Y-123 phase. Also, from the X-ray diffraction patterns performed, in powder and pellet samples, we estimated the Lotgering factor along the (00l) direction, F((00l)). The results indicate that F((00l)) increases from 0.13 to 0.16. From electrical resistivity measurements as a function of temperature, we were able to separate contributions arising from both the grain misalignment and microstructural defects. We found appreciable degradation in the normal-state transport properties of samples with an increase in uniaxial compacting pressure. It seems that this type of behavior is associated with an increase in the influence of microstructural defects at the intergranular level. The experimental results are analyzed in the framework of a current conduction model of granular samples.