9 resultados para Interferon-stimulated gene (ISG)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-Hz frequency with pulses of 0.1 ms (voltage 24 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon. Muscle Nerve 40: 838-846, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic Mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome. Methods: We performed direct sequence analysis of interferon regulatory factor 6 exons oil samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome. Results: We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA. Conclusion: The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. Oil the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect oil interferon regulatory factor 6 function. Genet Med 2009:11(4):241-247.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P = 0.036). Monocytes from SCD patients showed higher levels of p47 phox phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P = 0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P > 0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptors (TLRs), a family of mammalian receptors, are able to recognize nucleic acids. TLR3 recognizes double-stranded (ds)RNA, a product of the replication of certain viruses. Polyinosinic-polycytidylic acid, referred to as poly(I:C), an analog of viral dsRNA, interacts with TLR3 thereby eliciting immunoinflammatory responses characteristic of viral infection or down-regulating the expression of chemokine receptor CXCR4. It is known that dsRNA also directly activates interferon (IFN)-induced enzymes, such as the RNA-dependent protein kinase (PKR). In the present study, the mRNA expression of TLR3, CXCR4, IFN gamma and PKR was investigated in a culture of peripheral blood mononuclear cells (PBMCs) stimulated with poly(I:C) and endogenous RNA from human PBMCs. No cytotoxic effect on the cells or on the proliferation of CD3(+), CD4(+) and CD8(+) cells was observed. TLR3 expression in the PBMCs in the presence of poly(I:C) was up-regulated 9.5-fold, and TLR3 expression in the PBMCs treated with endogenous RNA was down-regulated 1.8-fold (p=0.002). The same trend was observed for IFN gamma where in the presence of poly(I:C) an 8.7-fold increase was noted and in the presence of endogenous RNA a 3.1-fold decrease was observed. In the culture activated with poly(1:C), mRNA expression of CXCR4 increased 8.0-fold and expression of PKR increased 33.0-fold. Expression of these genes decreased in the culture treated with endogenous RNA when compared to the culture without stimulus. Thus, high expression of mRNA for TLR3, IFN gamma, CXCR4 and PKR was observed in the presence of poly(I:C) and low expression was observed in the cells cultured with endogenous RNA. In conclusion, TLR3 may play major physiological roles that are not in the context of viral infection. It is possible that RNA released from cells could contain enough double-stranded structures to regulate cell activation. The involvement of endogenous RNA in endogenous gene expression and its implications in the regulation thereof, are still being studied, and will have significant implications in the future.