6 resultados para Intensity profiles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Limited studies have demonstrated that low intensity laser therapy (LILT) may have a therapeutic effect on the treatment of myofascial pain syndrome (MPS). Sixty (60) patients with MPS and having one active trigger point in the anterior masseter and anterior temporal muscles were selected and assigned randomly to six groups (n=10): Groups I to III were treated with GaAIAS (780 nm) laser, applied in continuous mode and in a meticulous way, twice a week, for four weeks. Energy was set to 25 J/cm(2), 60 J/cm2 and 105 J/cm2, respectively. Groups IV to VI were treated with placebo applications, simulating the same parameters as the treated groups. Pain scores were assessed just before, then immediately after the fourth application, immediately after the eighth application, at 15 days and one month following treatment. A significant pain reduction was observed over time (p<0.001). The analgesic effect of the LILT was similar to the placebo groups. Using the parameters described in this experiment, LILT was effective in reducing pain experienced by patients with myofascial pain syndrome. Thus, it was not possible to establish a treatment protocol. Analyzing the analgesic effect of LILT suggests it as a possible treatment of MPS and may help to establish a clinical protocol for this therapeutic modality.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002-2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asuncin. In Mariscal and Asuncin, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.
Resumo:
We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade & Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs-RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.