3 resultados para Instantaneous space vector
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.