4 resultados para Insolation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The long-term Colonia record is located in the Atlantic rainforest domain in Brazil (23 degrees 52`S 46 degrees 42`20 `` W 900 m a.s.l.). The 780 cm long core CO3 provides a coverage of a complete interglacial/glacial cycle for the first time in a neotropical rainforest. Information on the behavior of tropical climates compared to global changes in temperatures indicates specific climate responses in terms of precipitation at these latitudes. Winter extratropical circulation was very active during the last interglacial and most of the glacial. Floristic composition of the rainforest changed several times in each phase of expansion, twice during the interglacial, and three times during glacial episodes. Araucaria was well developed in the area of Sao Paulo until the beginning of the first dry phase of the glacial at ca. 50,000 yr B.P. Changes in insolation controlled the expansion of the rainforest and the tropical hydrological cycle as evidenced by a strong precession signal. However precession had no impact on regional climatic features. The two interglacials (MIS 5e and Holocene) showed completely different patterns attesting to the continuous evolution of the forest. The biodiversity index (Shannon-Wiener Index) remained high during both the interglacial and glacial attesting to the permanence of small patches of rainforest refugia during drier phases. The lowest Shannon-Wiener Indexes were recorded between 23,000 and 12,000 yr B.P. and 40,000 and 30,000 yr B.P. and characterize two marked phases of stress for the rainforest. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
Resumo:
The variations of tropical precipitation are antiphased between the hemispheres on orbital timescales. This antiphasing arises through the alternating strength of incoming solar radiation in the two hemispheres, which affects monsoon intensity and hence the position of the meridional atmospheric circulation of the Hadley cells(1-4). Here we compare an oxygen isotopic record recovered from a speleothem from northeast Brazil for the past 26,000 years with existing reconstructions of precipitation in tropical South America(5-8). During the Holocene, we identify a similar, but zonally oriented, antiphasing of precipitation within the same hemisphere: northeast Brazil experiences humid conditions during low summer insolation and aridity when summer insolation is high, whereas the rest of southern tropical South America shows opposite characteristics. Simulations with a general circulation model that incorporates isotopic variations support this pattern as well as the link to insolation-driven monsoon activity. Our results suggest that convective heating over tropical South America and associated adjustments in large-scale subsidence over northeast Brazil lead to a remote forcing of the South American monsoon, which determines most of the precipitation changes in the region on orbital timescales.