211 resultados para Inflammatory cytokine

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host`s immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The balance between different immunological stimuli is essential in the progression and stabilization of atherosclerotic plaques. Immune regulation has been suggested as potential target for the treatment of atherosclerotic disease. We sought to determine whether treatment with pentoxifylline, a phosphodiesterase inhibitor with immunomodulating properties, could reduce the pro-inflammatory response observed in patients with acute coronary syndromes (ACS) and increase anti-inflammatory activity. In a double-blind, prospective, placebo-controlled study, 64 patients with ACS were randomized to receive pentoxifylline 400 mg TID or placebo for 6 months. Analysis of the pro-inflammatory markers, Greactive protein (CRP), interleukin (IL)-6, IL-12, interferon-gamma and tumor necrosis factor (TNF)-alpha and the anti-inflammatory cytokines, transforming growth factor (TGF)-beta 1 and IL-10 were done at baseline, 1 and 6 months. Pentoxifylline treatment significantly reduced the adjusted levels of CRP and TNF-alpha compared to placebo after 6 months (P=0.04 and P < 0.01, respectively). IL-12 increase was significantly less pronounced with pentoxifylline (P=0.04). The levels of the anti-inflammatory cytokine, IL-10, also declined significantly less in the pentoxifylline group compared to placebo (P < 0.01) with a trend towards a higher increase of TGF-beta 1 in the former group (P=0.16). Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory response in patients with ACS and may have beneficial clinical effects on cardiovascular events. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic joint inflammation and continuous immune cell infiltration in the synovium. These changes are linked to inflammatory cytokine release, leading to eventual destruction of cartilage and bone. During the last decade new therapeutic modalities have improved the prognosis, with the introduction of novel biological response modifiers including anti-TNF alpha CTLA4Ig and, more recently, anti-IL6. In the present study we looked at the immunological effects of these three forms of therapy. Serum, obtained from patients with RA was analyzed for TNF alpha, IL6, IL10, IFN gamma, and VEGF, and in parallel, circulating plasmacytoid and myeloid dendritic cells (DC) were enumerated before and after three infusions of the respective biological treatments. After treatment with anti-IL6, we found a significant reduction of IL6 and TNF alpha levels and the percentage of both DC subsets decreased. Although the results did not reach statistical significance for anti-TNF alpha treatment, similar trends were observed. Meanwhile, CTLA4Ig therapy led to the reduction IFN gamma levels only. None of the treatments modified significantly VEGF or IL10 levels. These findings may explain why patients with RA improve more rapidly on IL-6 therapy than with the other two modalities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The immunologic characterization of chronic idiopathic urticaria (CIU), mainly regarding cytokine profile needs more investigation. We examined circulating inflammatory cytokine levels, T-cell induced secretion, and cytokine mRNA expression in patients with CIU subjected to the intradermal autologous serum skin test (ASST). Increased levels of circulating pro-inflammatory cytokines, such as TNF-alpha, IL-1 beta, IL-12p70, and IL-6 have been observed in most of patients with CIU, together with an enhancement of IL-2 secretion following T-cell stimulation. Highlighting the inflammatory profile in CIU found in ASST positive, is the enhanced B-cell proliferative responsiveness and increased IL-17 secretion levels. ASST-positive patients also exhibited impaired IL-4 secretion associated with increased IL-10 production. Altered cytokine expression in patients with ASST-negative, was the down-modulation of spontaneous IL-10 mRNA expression levels in peripheral blood mononuclear cells. Our findings support the concept of immunologic dysregulation in CIU, revealing a systemic inflammatory profile associated with disturbed cytokine production by T cells, mainly related to IL-17 and IL-10 production. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Severe acute pancreatitis is associated with high morbidity and mortality rates. At the present time, no specific therapy has been shown to be uniformly effective in reducing morbidity and mortality in this disease. The aim of this study was to determine the effects of pentoxifylline on the pancreatic and systemic inflammatory process, pancreatic infection, and mortality rate in severe acute pancreatitis in rats. Methods: One hundred and twenty male Wistar rats were divided into 3 groups: sham, pancreatitis, and pentoxifylline (acute pancreatitis induction plus administration of 25 mg/kg pentoxifylline). Inflammatory response was measured by histological studies, inflammatory cytokine production (IL-6, IL-10, and TNF-alpha), and mortality rate. Pancreatic infection was evaluated by bacterial cultures expressed in colony-forming units per gram. Results: Pentoxifylline-treated animals had a statistically significant reduction of inflammatory cytokine levels, pancreatic histological damage, occurrence of bacterial translocation and pancreatic infection (p < 0.05), associated with a significant reduction in mortality rate. Conclusions: Pentoxifylline administration in this experimental model of acute pancreatitis reduces local and systemic inflammatory responses and decreases the pancreatic infection and the mortality rate. Copyright (C) 2009 S. Karger AG, Basel and IAP

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives The aim was to test the potential use of an extract of Mikania laevigata (popularly known in Brazil as guaco), made from leaves harvested in different months of the year, oil neutrophil migration after all inflammatory Stimulus and investigate the underlying molecular mechanisms. Methods We examined the effect of guaco on vascular permeability and leucocyte function in carrageenan-induced peritonitis in mice. Key findings Our results demonstrated that guaco extract administered subcutaneously (3 mg/kg) decreased the vascular permeability and also leucocyte rolling and adhesion to the inflamed tissues by a mechanism dependent on nitric oxide. Specifically, inhibitors of nitric oxide synthase remarkably abrogated the guaco extract-mediated suppression of neutrophil migration to the inflammatory site. In addition, guaco extract-mediated suppression of neutrophil migration appeared to be dependent on the production of the cytokines interleukin-1 beta and tumour necrosis factor-alpha. One of the major constituents of the guaco extract, coumarin, was able to inhibit the neutrophil migration towards the inflammatory focus. Conclusions In conclusion the anti-inflammatory effect induced by guaco extract may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin-6 (IL-6). Acute physical exercise is known to induce a pro-inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro- and anti-inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL-6, TNF-alpha, IL-1 beta and IL-10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a Sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week(-1) for 8 weeks (60% VO(2max)). Detection of IL-6, TNF-alpha, IL-1 beta and IL-10 protein expression was carried out by ELISA. We found decreased expression of IL-1 beta, IL-6, TNF-alpha and IL-10 (28%, 27%. 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL-1 beta, TNF-alpha and IL-10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL-6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8-week moderate-intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Our aim was to analyze the effect of laser phototherapy on the secretory activity of macrophages activated by interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS), and stimulated by substances leached from an epoxy resin-based sealer (AH-Plus) and a calcium hydroxide-based sealer (Sealapex). Background Data: Laser phototherapy can modulate the inflammatory process, improving wound healing. This type of therapy could be useful for modulating postoperative symptoms seen after endodontic treatment. Materials and Methods: Cytotoxicity was indirectly assessed by measuring mitochondrial activity. Macrophages were stimulated by the leached substances or not (controls), and the groups were then irradiated or not. The secretion of pro-inflammatory cytokines (TNF-alpha and MMP-1) was analyzed using ELISA. Two irradiations at 6-h intervals were done with an As-Ga-Al diode laser (780 nm, 70 mW, spot size 4.0 mm(2), 3 J/cm(2), for 1.5 sec) in contact mode. Results: The sealers were non-cytotoxic to macrophages. The production of TNF-alpha was significantly decreased by laser phototherapy, regardless of experimental group. The level of secretion of MMP-1 was similar in all groups. Conclusion: Based on the conditions of this study we concluded that in activated macrophages, laser phototherapy impairs the secretion of the pro-inflammatory cytokine TNF-alpha, but has no influence on MMP-1 secretion.