3 resultados para Induction type Watt-hour meters
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
The type I and type II heat-labile enterotoxins (LT-I and LT-II) are strong mucosal adjuvants when they are coadministered with soluble antigens. Nonetheless, data on the parenteral adjuvant activities of LT-II are still limited. Particularly, no previous study has evaluated the adjuvant effects and induced inflammatory reactions of LT-II holotoxins or their B pentameric subunits after delivery via the intradermal (i.d.) route to mice. In the present report, the adjuvant and local skin inflammatory effects of LT-IIa and its B subunit pentamer (LT-IIaB(5)) were determined. When coadministered with ovalbumin (OVA), LT-IIa and, to a lesser extent, LT-IIaB(5) exhibited serum IgG adjuvant effects. In addition, LT-IIa but not LT-IIaB(5) induced T cell-specific anti-OVA responses, particularly in respect to induction of antigen-specific cytotoxic CD8(+) T cell responses. LT-IIa and LT-IIaB(5) induced differential tissue permeability and local inflammatory reactions after i.d. injection. Of particular interest was the reduced or complete lack of local reactions, such as edema and tissue induration, in mice i.d. inoculated with LT-IIa and LT-IIaB(5), respectively, compared with mice immunized with LT-I. In conclusion, the present results show that LT-IIa and, to a lesser extent, LT-IIaB(5) exert adjuvant effects when they are delivered via the i.d. route. In addition, the low inflammatory effects of LT-IIa and LT-IIaB(5) in comparison to those of LT-I support the usefulness of LT-IIa and LT-IIaB(5) as parenterally delivered vaccine adjuvants.