6 resultados para Individual Variation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.
Resumo:
To date, limited numbers of dental calculus samples have been analyzed by researchers in diverse parts of the world. The combined analyses of these have provided some general guidelines for the analysis of calculus that is non-destructive to archaeological teeth. There is still a need for a quantitative study of large numbers of calculus samples to establish protocols, assess the level of contamination, evaluate the quantity of microfossils in dental calculus, and to compare analysis results with the literature concerning the biology of calculus formation. We analyzed dental calculus from 53 teeth from four Brazilian sambaquis. Sambaquis are the shell-mounds that were established prehistorically along the Brazilian coast. The analysis of sambaqui dental calculi shows that there are relatively high concentrations of microfossils (phytoliths and starch), mineral fragments, and charcoal in dental calculus. Mineral fragments and charcoal are possibly contaminants. The largest dental calculi have the lowest concentrations of microfossils. Biologically, this is explained by individual variation in calculus formation between people. Importantly, starch is ubiquitous in dental calculus. The starch and phytoliths show that certainly Dioscorea (yam) and Araucaria angustifolia (Parana pine) were eaten by sambaqui people. Araceae (arum family), Ipomoea batatas (sweet potato) and Zea mays (maize) were probably in their diet. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inflammatory cytokines such as interieukin-1 beta (IL-1 beta) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-10 mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-10 promoter single-nucleotide polymorphism at position 3954 [IL-1 beta(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1 beta levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects in = 175) and the possible correlations with the clinical parameters of the disease. IL-1 beta(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1 beta levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1 beta(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1 beta (3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1 beta levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1 beta(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1 beta in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1 beta(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1 beta in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome.
Resumo:
The essential oils isolated by hydrodistillation from trunk bark and leaves of Talauma ovata A. St. Hil. (Magnoliaceae), collected in four seasons, were analyzed by capillary GC and GC/MS. Altogether 52 components were identified, The oils were characterized by predominance of cyclic sesquiterpenes. The main components were linalool, trans-beta-guaiene, germaerene D, germacrene B, spathulenol, caryophyllene oxide, viridiflorol and alpha-endesmol. The content of individual components was variable during the year. All oils were screened against several strains of bacteria and yeasts, using the agar well-diffusion technique. The antimicrobial activity of oils showed strong dependence with the season. Significant activity was found for oils obtained in the spring and summer.
Resumo:
Many generalist populations may actually be composed of relatively specialist individuals. This `individual specialization` may have important ecological and evolutionary implications. Although this phenomenon has been documented in more than one hundred taxa, it is still unclear how individuals within a population actually partition resources. Here we applied several methods based on network theory to investigate the intrapopulation patterns of resource use in the gracile mouse opossum Gracilinanus microtarsus. We found evidence of significant individual specialization in this species and that the diets of specialists are nested within the diets of generalists. This novel pattern is consistent with a recently proposed model of optimal foraging and implies strong asymmetry in the interactions among individuals of a population.
Resumo:
Laboratory strains and natural isolates of Escherichia coli differ in their level of stress resistance due to strain variation in the level of the sigma factor sigma(S) (or RpoS), the transcriptional master controller of the general stress response. We found that the high level of RpoS in one laboratory strain (MC4100) was partially dependent on an elevated basal level of ppGpp, an alarmone responding to stress and starvation. The elevated ppGpp was caused by two mutations in spoT, a gene associated with ppGpp synthesis and degradation. The nature of the spoT allele influenced the level of ppGpp in both MC4100 and another commonly used K-12 strain, MG1655. Introduction of the spoT mutation into MG1655 also resulted in an increased level of RpoS, but the amount of RpoS was lower in MG1655 than in MC4100 with either the wild-type or mutant spoT allele. In both MC4100 and MG1655, high ppGpp concentration increased RpoS levels, which in turn reduced growth with poor carbon sources like acetate. The growth inhibition resulting from elevated ppGpp was relieved by rpoS mutations. The extent of the growth inhibition by ppGpp, as well as the magnitude of the relief by rpoS mutations, differed between MG1655 and MC4100. These results together suggest that spoT mutations represent one of several polymorphisms influencing the strain variation of RpoS levels. Stress resistance was higher in strains with the spoT mutation, which is consistent with the conclusion that microevolution affecting either or both ppGpp and RpoS can reset the balance between self-protection and nutritional capability, the SPANC balance, in individual strains of E coli.