37 resultados para Inconsumable Anode

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO(2) start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H(2)/CO, the formation of CO(2) is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics (R) (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics (R) is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H(2)/100 ppm CO, and operated at 30 degrees C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V. which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H(2)/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon-supported binary Pt(3)Sn catalyst has been prepared using a modified polymeric precursor method under controlled synthesis conditions This material was characterized using X-ray diffraction (XRD). and the results indicate that 23% (of a possible 25%) of Sn is alloyed with Pt, forming a dominant Pt(3)Sn phase. Transmission election microscopy (TEM) shows good dispersion of the electrocatalyst and small particle sizes (3 6 nm +/- 1 nm) The polarization curves for a direct ethanol fuel cell using Pt(3)Sn/C as the anode demonstrated Improved performance compared to that of a PtSn/C E-TEK. especially in the intrinsic resistance-controlled and mass transfer regions. This behavior is probably associated with the Pt(3)Sn phase. The maximum power density for the Pt(3)Sn/C electrocatalyst (58 mW cm(-2)) is nearly twice that of a PtSn/C E-TEK electrocatalyst (33 mW cm(-2)) This behavior is attributed to the presence of a mixed Pt(9)Sn and Pt(3)Sn alloy phase in the commercial catalysts (C) 2009 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA® anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the eletrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L-1), nitrate ions (6 mg L-1) and nitrite ions (4.5 mg L-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of black dye commercial product (BDCP) composed of C.I. Disperse Blue 373, C.I. Disperse Orange 37, C.I. Disperse Violet 93 dyes was investigated by photoelectrocatalysis process. The dyes have shown high mutagenic activity with Salmonella strain YG1041 and TA98 with and without S9. Samples of BCPD dye submitted to conventional chlorination and photoelectrocatalytic oxidation were compared monitoring its products by HPLC using a diode array detector, spectrophotometry UV-vis, TOC removal, and mutagenicity potency. The photoelectrocatalytic method operating with Ti/TiO(2) as anode at +1.0 V and UV illumination presented fast oxidation of test solutions containing 10 mg L(-1) of dye in 0.1 mol L(-1) NaCl pH 4.0 leading to 100% of discoloration, 67% of mineralization, and negative response to all tested Salmonella strains. The formation of Cl(aEuro cent), CL(2) (aEuro cent) on photoelectrocatalytic medium improved the efficiency of the method in relation to conventional chlorination method that promoted 100% of discoloration, but only 8% of TOC removal and more mutagenic product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary and ternary Pt-based catalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm(-3) H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 degrees C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.