243 resultados para Immune Tolerance -- immunology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Background Several primary immune deficiency disorders are associated with autoimmunity and malignancy, suggesting a state of immune dysregulation. The concept of immune dysregulation as a direct cause of autoimmunity in primary immune deficiency disorders (PIDDs) has been strengthened by the recent discovery of distinct clinical entities linked to single-gene defects resulting in multiple autoimmune phenomena including immune dysregulation, polyendocrinopathy, enteropathy and X-linked (IPEX) syndrome, and autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED) syndrome. Conclusion Reviewing recent advances in our understanding of the small subgroup of PIDD patients with defined causes for autoimmunity may lead to the development of more effective treatment strategies for idiopathic human autoimmune diseases.
Resumo:
Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules, These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.
Resumo:
Objectives To determine TCR excision circle (TREC) levels, a marker of recent thymic emigrants, in the peripheral lymphocyte pool of rheumatoid factor-negative (RF circle divide) polyarticular juvenile idiopathic arthritis (JIA) children. Materials and methods We studied TREC levels in peripheral blood mononuclear cells (PBMC) in 30 RF circle divide polyarticular JIA children with active disease and in 30 age- and gender-matched healthy controls. Signal-joint TREC concentration was determined by real-time quantitative-PCR as the number of TREC copies/mu g PBMC DNA gauged by a standard curve with known number of TREC-containing plasmids. Results TREC levels in PBMC were significantly lower in JIA (4.90 +/- 3.86 x 10(4) TRECs/mu g DNA) as compared to controls (10.45 +/- 8.45 x 10(4) TRECs/mu g DNA, p=0.001). There was an inverse correlation between age and TREC levels in healthy children (r=-0.438, p=0.016) but not in JIA. No clinical association was observed between TREC levels and disease activity and use of oral steroids and methotrexate. Conclusions The finding of decreased PBMC TREC levels in RF circle divide polyarticular JIA children is consistent with a low proportion of recent thymus emigrants. This may interfere with the equilibrium between populations of polyclonal and naive T cells versus oligoclonal memory auto-reactive T cells and, therefore, may hinder the maintenance of immune tolerance in this disease.
Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse
Resumo:
Brain derived neurotrophic factor (BDNF) has been related to neuroprotection in a series of central nervous system diseases, although its role in multiple sclerosis (MS) was only partially investigated. In this work, we aimed to evaluate the plasma levels of BDNF from 29 MS patients and 24 control subjects. MS patients had decreased levels of BDNF in comparison with healthy controls. BDNF levels increased significantly after MS relapse. Our results provide some evidence for the involvement of BDNF in the pathogenesis of MS and suggest a role for this neurotrophin during the recovery of acute demyelinating inflammatory lesion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
Extensive lymphocyte apoptosis may be an important cause of immune suppression in sepsis. Here we investigated the effect of LPS tolerance on lymphocyte apoptosis in an experimental model of polymicrobial infection. Tolerance was induced by the injection of lipopolysaccharide (1.0 mg/kg/subcutaneously) once a day for 5 days. Macroarray analysis of mRNA isolated from T-(CD4) lymphocytes was used to identify genes that are differentially expressed during LPS tolerance. In addition, assessment of the expression of apoptosis-associated lymphocyte gene products and apoptotic events was performed on the 8th day; 6 h after the terminal challenge with polymicrobial infection or high-dose LPS administration. Survival studies with polymicrobial infection were also conducted. LPS tolerance induced a broad reprogramming of cell death pathways, including a suppression of receptor-mediated and mitochondrial apoptotic pathways, inflammatory caspases, alternate apoptotic pathways, as well as reduced expression of genes involved in necrosis. These alterations led to a marked resistance of lymphocytes against cell death during the subsequent period of sepsis. In addition, LPS tolerance produced an increased differentiation of T-lymphocytes to T(H)1 and T(H)2, with a T(H)1 differentiation predominance. Thus, in the current study we provide an evidence for a marked reprogramming of gene expression of multiple cell death pathways during LPS tolerance. These alterations may play a significant role in the observed protection of the animals from a subsequent lethal polymicrobial sepsis challenge. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory immune response directed against myelin antigens of the central nervous system. In its murine model, EAE, Th17 cells play an important role in disease pathogenesis. These cells can induce blood-brain barrier disruption and CNS immune cells activation, due to the capacity to secrete high levels of IL-17 and IL-22 in an IL-6 + TGF-beta dependent manner. Thus, using the oral tolerance model, by which 200 mu g of MOG 35-55 is given orally to C57BL/6 mice prior to immunization, we showed that the percentage of Th17 cells as well as IL-17 secretion is reduced both in the periphery and also in the CNS of orally tolerated animals. Altogether, our data corroborates with the pathogenic role of IL-17 and IFN-gamma in EAE, as its reduction after oral tolerance, leads to an overall reduction of pro-inflammatory cytokines, such as IL-1 alpha, IL-6, IL-9, IL-12p70 and the chemokines MIP-1 beta, RANTES, Eotaxin and KC in the CNS. It is noteworthy that this was associated to an increase in IL-10 levels. Thus, our data clearly show that disease suppression after oral tolerance induction, correlates with reduction in target organ inflammation, that may be caused by a reduced Th1/Th17 response. Crown Copyright (c) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.
Resumo:
The aim of the study was to evaluate the possible relationships between stress tolerance, training load, banal infections and salivary parameters during 4 weeks of regular training in fifteen basketball players. The Daily Analysis of Life Demands for Athletes` questionnaire (sources and symptoms of stress) and the Wisconsin Upper Respiratory Symptom Survey were used on a weekly basis. Salivary cortisol and salivary immunoglobulin A (SIgA) were collected at the beginning (before) and after the study, and measured by enzyme-linked immunosorbent assay (ELISA). Ratings of perceived exertion (training load) were also obtained. The results from ANOVA with repeated measures showed greater training loads, number of upper respiratory tract infection episodes and negative sensation to both symptoms and sources of stress, at week 2 (p < 0.05). Significant increases in cortisol levels and decreases in SIgA secretion rate were noted (before to after). Negative sensations to symptoms of stress at week 4 were inversely and significantly correlated with SIgA secretion rate. A positive and significant relationship between sources and symptoms of stress at week 4 and cortisol levels were verified. In summary, an approach incorporating in conjunction psychometric tools and salivary biomarkers could be an efficient means of monitoring reaction to stress in sport. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The recombinant apical membrane antigen 1 (AMA-1) and 19-kDa fragment of merozoite surface protein (MSP-1(19)) are the lead candidates for inclusion in a vaccine against blood stages of malaria due to encouraging protective studies in humans and animals. Despite the importance of an efficacious malaria vaccine, vaccine-related research has focused on identifying antigens that result in protective immunity rather than determining the nature of anti-malarial immune effector mechanisms. Moreover, emphasis has been placed on adaptive rather than innate immune responses. In this study, we investigated the effect of Plasmodium vivax vaccine candidates Pv-AMA-1 and Pv-MSP-1(19) on the immune response of malaria-naive donors. Maturation of dendritic cells is altered by Pv-AMA-1 but not Pv-MSP-1(19), as observed by differential expression of cell surface markers. In addition, Pv-AMA-1 induced an increased production of MIP-1 alpha/CCL3 and decreased production of TARC/CCL17 levels in both dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs). Finally, a significant pro-inflammatory response was elicited by Pv-AMA-1-stimulated PBMCs. These results suggest that the recombinant vaccine candidate Pv-AMA-1 may play a direct role on innate immune response and might be involved in parasite destruction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Although the origin and functions of B-1 cells are controversial, they are considered as a cellular element of innate immunity due to their ability to produce natural autoantibodies of the IgM type. These antibodies are encoded by a relatively limited repertoire of V genes, and their resulting diversity is smaller than that produced by conventional B cells. B-1 cells constitute the larger fraction of B cells in the peritoneal cavity and migrate to non-specific inflammation sites. In addition, they contribute to the production of IgA antibodies in the intestinal lamina propria. It has been demonstrated that they participate in the induction and maintenance of peripheral tolerance. Herein, the participation of B-1 cells in inducing oral tolerance is evaluated. Unexpectedly, BALB/Xid mice, the animals deficient in B-1 cells, are not tolerized to OVA but instead are responsive to oral immunization. Conversely, BALB/c mice respond to oral tolerance to this antigen. We used these biological characteristics of these animals to investigate whether BA cells are involved in the induction of oral tolerance to OVA. Results show that B-1 cells from BALB/c mice, treated orally with OVA and adoptively transferred to BALB/Xid mice were able to suppress local hypersensitivity reaction and lymphoproliferative cellular response observed in BALB/.Xid mice. These data demonstrate that B-1 cells have regulatory properties and are involved in the induction of oral tolerance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The immune response to infection by dermatophytes ranges from a non-specific host mechanism to a humoral and cell-mediated immune response. The currently accepted view is that a cell-mediated immune response is responsible for the control of dermatophytosis. Indeed, some individuals develop a chronic or recurrent infection mediated by the suppression of a cell-mediated immune response. The immune response to Trichophyton is unusual in that this fungus can elicit both immediate hypersensitivity (IH) and delayed-type hypersensitivity (DTH) in different individuals when they are submitted to a skin test reaction. Understanding the nature and function of the immune response to dermatophytes is an exciting challenge that might lead to novel approaches in the treatment and immunological prophylaxis of dermatophytosis.
Resumo:
Chagas` disease is considered the sixth most important neglected tropical disease worldwide. Considerable knowledge has been accumulated concerning the role of zinc on cellular immunity. The steroid hormone dehydroepiandrosterone (DHEA) is also known to modulate the immune system. The aims of this paper were to investigate a possible synchronization of their effects on cytokines and NO production and the resistance to Trypanosoma cruzi during the acute phase of infection. It was found that zinc, DHEA or zinc and DHEA supplementation enhanced the immune response, as evidenced by a significant reduction in parasitemia levels. Zinc and DHEA supplementation exerted additive effects on the immune response by elevation of macrophage counts, and by increasing concentrations of IFN-gamma and NO. (C) 2009 Elsevier GmbH. All rights reserved.